Nan Lang, Zhang Huidan, Weitz David A, Shum Ho Cheung
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
Lab Chip. 2024 Feb 27;24(5):1135-1153. doi: 10.1039/d3lc00729d.
Over the past two decades, advances in droplet-based microfluidics have facilitated new approaches to process and analyze samples with unprecedented levels of precision and throughput. A wide variety of applications has been inspired across multiple disciplines ranging from materials science to biology. Understanding the dynamics of droplets enables optimization of microfluidic operations and design of new techniques tailored to emerging demands. In this review, we discuss the underlying physics behind high-throughput generation and manipulation of droplets. We also summarize the applications in droplet-derived materials and droplet-based lab-on-a-chip biotechnology. In addition, we offer perspectives on future directions to realize wider use of droplet microfluidics in industrial production and biomedical analyses.
在过去二十年中,基于液滴的微流控技术取得的进展推动了新方法的发展,能够以前所未有的精度和通量处理和分析样品。从材料科学到生物学等多个学科都受到启发,涌现出各种各样的应用。了解液滴的动力学有助于优化微流控操作,并根据新出现的需求设计新技术。在本综述中,我们讨论了高通量生成和操控液滴背后的基础物理学原理。我们还总结了液滴衍生材料和基于液滴的芯片实验室生物技术中的应用。此外,我们对未来的发展方向提出了展望,以实现液滴微流控技术在工业生产和生物医学分析中更广泛的应用。