Suppr超能文献

聚合物弛豫时间和频率谱直接识别中正则化参数的最优选择

Optimal Choice of the Regularization Parameter for Direct Identification of Polymers Relaxation Time and Frequency Spectra.

作者信息

Stankiewicz Anna, Bojanowska Monika

机构信息

Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland.

Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland.

出版信息

Polymers (Basel). 2024 Dec 26;17(1):31. doi: 10.3390/polym17010031.

Abstract

Recovering the relaxation spectrum, a fundamental rheological characteristic of polymers, from experiment data requires special identification methods since it is a difficult ill-posed inverse problem. Recently, a new approach relating the identification index directly with a completely unknown real relaxation spectrum has been proposed. The integral square error of the relaxation spectrum model was applied. This paper concerns regularization aspects of the linear-quadratic optimization task that arise from applying Tikhonov regularization to relaxation spectra direct identification problem. An influence of the regularization parameter on the norms of the optimal relaxation spectra models and on the fit of the related relaxation modulus model to the experimental data was investigated. The trade-off between the integral square norms of the spectra models and the mean square error of the relaxation modulus model, parameterized by varying regularization parameter, motivated the definition of two new multiplicative indices for choosing the appropriate regularization parameter. Two new problems of the regularization parameter optimal selection were formulated and solved. The first and second order optimality conditions were derived and expressed in the matrix-vector form and, alternatively, in finite series terms. A complete identification algorithm is presented. The usefulness of the new regularization parameter selection rules is demonstrated by three examples concerning the Kohlrausch-Williams-Watts spectrum with short relaxation times and uni- and double-mode Gauss-like spectra with middle and short relaxation times.

摘要

从实验数据中恢复聚合物的基本流变特性——松弛谱,需要特殊的识别方法,因为这是一个困难的不适定逆问题。最近,提出了一种将识别指标直接与完全未知的真实松弛谱相关联的新方法。应用了松弛谱模型的积分平方误差。本文关注将蒂霍诺夫正则化应用于松弛谱直接识别问题时出现的线性二次优化任务的正则化方面。研究了正则化参数对最优松弛谱模型的范数以及相关松弛模量模型与实验数据拟合的影响。通过改变正则化参数进行参数化,谱模型的积分平方范数与松弛模量模型的均方误差之间的权衡促使定义了两个新的乘法指标来选择合适的正则化参数。提出并解决了两个正则化参数最优选择的新问题。推导了一阶和二阶最优性条件,并以矩阵 - 向量形式以及有限级数形式表示。给出了完整的识别算法。通过三个例子证明了新的正则化参数选择规则的有效性,这三个例子分别涉及具有短松弛时间的科尔劳施 - 威廉姆斯 - 瓦特谱以及具有中短松弛时间的单模和双模高斯型谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58f7/11722655/c8e5d47dbfc3/polymers-17-00031-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验