Pérez-Calixto Daniel, Amat-Shapiro Samuel, Zamarrón-Hernández Diego, Vázquez-Victorio Genaro, Puech Pierre-Henri, Hautefeuille Mathieu
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
Polymers (Basel). 2021 Feb 20;13(4):629. doi: 10.3390/polym13040629.
Following the general aim of recapitulating the native mechanical properties of tissues and organs in vitro, the field of materials science and engineering has benefited from recent progress in developing compliant substrates with physical and chemical properties similar to those of biological materials. In particular, in the field of mechanobiology, soft hydrogels can now reproduce the precise range of stiffnesses of healthy and pathological tissues to study the mechanisms behind cell responses to mechanics. However, it was shown that biological tissues are not only elastic but also relax at different timescales. Cells can, indeed, perceive this dissipation and actually need it because it is a critical signal integrated with other signals to define adhesion, spreading and even more complicated functions. The mechanical characterization of hydrogels used in mechanobiology is, however, commonly limited to the elastic stiffness (Young's modulus) and this value is known to depend greatly on the measurement conditions that are rarely reported in great detail. Here, we report that a simple relaxation test performed under well-defined conditions can provide all the necessary information for characterizing soft materials mechanically, by fitting the dissipation behavior with a generalized Maxwell model (GMM). The simple method was validated using soft polyacrylamide hydrogels and proved to be very useful to readily unveil precise mechanical properties of gels that cells can sense and offer a set of characteristic values that can be compared with what is typically reported from microindentation tests.
遵循在体外重现组织和器官天然力学特性的总体目标,材料科学与工程领域受益于近期在开发具有与生物材料相似物理和化学性质的柔性基底方面取得的进展。特别是在力学生物学领域,软水凝胶现在可以重现健康和病理组织精确的刚度范围,以研究细胞对力学响应背后的机制。然而,研究表明生物组织不仅具有弹性,而且在不同的时间尺度上会松弛。细胞确实能够感知这种耗散,并且实际上需要它,因为它是与其他信号整合在一起的关键信号,用于定义黏附、铺展以及更复杂的功能。然而,力学生物学中使用的水凝胶的力学表征通常仅限于弹性刚度(杨氏模量),而且已知该值在很大程度上取决于很少详细报道的测量条件。在此,我们报告,在明确界定的条件下进行的简单松弛测试,通过用广义麦克斯韦模型(GMM)拟合耗散行为,可以提供表征软材料力学性能所需的所有信息。该简单方法通过使用软聚丙烯酰胺水凝胶进行了验证,并且被证明对于轻松揭示细胞能够感知的凝胶的精确力学性能非常有用,并提供了一组可以与通常从微压痕测试中报告的值进行比较的特征值。