Ferreira Marcos V, Ricci Poliana, Sobreira Henrique A, Faria Anizio M, Panatieri Rodrigo B, Sumerlin Brent S, Assunção Rosana M N
Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, Brazil.
Institute of Exact and Natural Sciences, Federal University of Uberlândia, Ituiutaba 38304-402, Brazil.
Polymers (Basel). 2024 Dec 29;17(1):58. doi: 10.3390/polym17010058.
Cellulose tosylate (MCC-Tos) is a key derivative for surface modification and a crucial precursor for cellulose compatibilization in click reactions, enabling its functionalization for advanced applications. Replacing tosyl groups with alkyne groups broadens cellulose's potential in biocompatible reactions, such as thiol-yne click chemistry and protein/enzyme immobilization. To achieve this, we optimized the heterogeneous synthesis of MCC-Tos using a Doehlert matrix statistical design, evaluating the influence and interaction of the reaction conditions. The optimized conditions-144 h reaction time, 10:1 molar ratio, and 30 °C-yielded a degree of substitution for tosyl groups (DS) of 1.80, determined via elemental analysis and FTIR-ATR spectroscopy. The reaction kinetics followed a first-order model. A subsequent reaction with propargylamine produced aminopropargyl cellulose (MCC-P), reducing DS by 65%, which was confirmed via FTIR, and improving thermal stability by a margin of 30 °C (TGA/DTG). C CP/MAS NMR confirmed the alkyne group attachment, further validated via coupling an azide-functionalized coumarin through copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC). Fluorescence microscopy and UV spectroscopy were used to estimate a substitution degree of 0.21. This study establishes a feasible route for synthesizing alkyne-functionalized cellulose, paving the way for eco-friendly materials, including protein/enzyme bioconjugates, composites, and advanced materials via thiol-yne and CuAAC reactions.
对甲苯磺酸纤维素酯(MCC-Tos)是表面改性的关键衍生物,也是点击反应中纤维素增容的重要前体,可实现其功能化以用于先进应用。用炔基取代甲苯磺酰基拓宽了纤维素在生物相容性反应中的潜力,如硫醇-炔点击化学和蛋白质/酶固定化。为实现这一目标,我们使用Doehlert矩阵统计设计优化了MCC-Tos的多相合成,评估了反应条件的影响和相互作用。优化条件(反应时间144小时、摩尔比10:1和30°C)下,通过元素分析和傅里叶变换红外光谱-衰减全反射光谱(FTIR-ATR)测定的甲苯磺酰基取代度(DS)为1.80。反应动力学遵循一级模型。随后与炔丙胺反应生成氨基炔丙基纤维素(MCC-P),使DS降低了65%(通过FTIR确认),并使热稳定性提高了30°C(热重分析/微商热重分析)。交叉极化/魔角旋转核磁共振(CP/MAS NMR)证实了炔基的连接,通过铜(I)催化的炔基-叠氮环加成反应(CuAAC)将叠氮功能化香豆素偶联进一步验证了这一点。荧光显微镜和紫外光谱用于估计取代度为0.21。本研究建立了一条合成炔基功能化纤维素的可行路线,为通过硫醇-炔和CuAAC反应制备包括蛋白质/酶生物共轭物、复合材料和先进材料在内的环保材料铺平了道路。