Dadfar Seyed Mohammad Mahdi, Sekula-Neuner Sylwia, Bog Uwe, Trouillet Vanessa, Hirtz Michael
Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Institute for Applied Materials (IAM) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Small. 2018 May;14(21):e1800131. doi: 10.1002/smll.201800131. Epub 2018 Apr 22.
Different types of click chemistry reactions are proposed and used for the functionalization of surfaces and materials, and covalent attachment of organic molecules. In the present work, two different catalyst-free click approaches, namely azide-alkyne and thiol-alkyne click chemistry are studied and compared for the immobilization of microarrays of azide or thiol inks on functionalized glass surfaces. For this purpose, the surface of glass is first functionalized with dibenzocyclooctyne-acid (DBCO-acid), a cyclooctyne with a carboxyl group. Then, the DBCO-terminated surfaces are functionalized via microchannel cantilever spotting with different fluorescent and nonfluorescent azide and thiol inks. Although both routes work reliably for surface functionalization, the protein binding experiments reveal that using a thiol-alkyne route will obtain the highest surface density of molecular immobilization in such spotting approaches. The obtained achievements and results from this work can be used for design and manufacturing of microscale patterns suitable for biomedical and biological applications.
人们提出了不同类型的点击化学反应,并将其用于表面和材料的功能化以及有机分子的共价连接。在本工作中,研究并比较了两种不同的无催化剂点击方法,即叠氮化物-炔烃点击化学和硫醇-炔烃点击化学,用于将叠氮化物或硫醇墨水的微阵列固定在功能化玻璃表面。为此,首先用二苯并环辛炔酸(DBCO-酸)对玻璃表面进行功能化,DBCO-酸是一种带有羧基的环辛炔。然后,通过微通道悬臂点样,用不同的荧光和非荧光叠氮化物和硫醇墨水对DBCO末端的表面进行功能化。尽管这两种途径都能可靠地用于表面功能化,但蛋白质结合实验表明,在这种点样方法中,使用硫醇-炔烃途径将获得最高的分子固定表面密度。这项工作所取得的成果可用于设计和制造适用于生物医学和生物学应用的微尺度图案。