Vega-Hanna Lourdes, Casas-Alba Dídac, Balsells Sol, Bolasell Mercè, Rubio Patricia, García-García Ana, García-García Oscar, O'Callaghan Mar, Pascual-Alonso Ainhoa, Armstrong Judith, Martinez-Monseny Antonio F
Genetics Department, Hospital Sant Joan de Déu, Member of ERN-ITHACA, 08950 Esplugues de Llobregat, Spain.
Statistics Department, Fundació de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain.
Diagnostics (Basel). 2024 Dec 25;15(1):10. doi: 10.3390/diagnostics15010010.
: duplication syndrome (MDS) (MIM#300260) is a rare X-linked neurodevelopmental disorder. This study aims to (1) develop a specific clinical severity scale, (2) explore its correlation with clinical and molecular variables, and (3) automate diagnosis using the Face2gene platform. : A retrospective study was conducted on genetically confirmed MDS patients who were evaluated at a pediatric hospital between 2012 and 2024. Epidemiological, clinical, and molecular data were collected. A standardized clinical questionnaire was collaboratively developed with input from physicians and parents. Patient photographs were used to train Face2Gene. : Thirty-five patients (0-24 years, 30 males) were included. Key features in males comprised intellectual disability (100%), hypotonia (93%), autism spectrum disorder (77%) and developmental regression (52%). Recurrent respiratory infections (79%), dysphagia (73%), constipation (73%) and gastroesophageal reflux (57%) were common. Seizures occurred in 53%, with 33% being treatment-refractory. The Face2Gene algorithm was successfully trained to identify MDS. A specific clinical severity scale (MECPDup) was developed and validated, correlating with the MBA (a scale developed for Rett syndrome). The MECPDup score was significantly higher in males ( < 0.001) and those with early death ( = 0.003). It showed significant positive correlations with age ( < 0.001) and duplication size ( = 0.044). : This study expands the understanding of MDS through comprehensive clinical and molecular insights. The integration of AI-based facial recognition technology and the development of the MECPDup severity scale hold promise for enhancing diagnostic accuracy, monitoring disease progression, and evaluating treatment responses in individuals affected by MDS.
重复综合征(MDS)(MIM#300260)是一种罕见的X连锁神经发育障碍。本研究旨在:(1)制定一个特定的临床严重程度量表;(2)探索其与临床和分子变量的相关性;(3)使用Face2gene平台实现自动化诊断。对2012年至2024年在一家儿科医院接受评估的基因确诊的MDS患者进行了一项回顾性研究。收集了流行病学、临床和分子数据。在医生和家长的参与下共同制定了一份标准化临床问卷。使用患者照片训练Face2Gene。纳入了35名患者(0至24岁,30名男性)。男性的关键特征包括智力残疾(100%)、肌张力减退(93%)、自闭症谱系障碍(77%)和发育倒退(52%)。反复呼吸道感染(79%)、吞咽困难(73%)、便秘(73%)和胃食管反流(57%)很常见。53%的患者发生癫痫,其中33%为难治性癫痫。Face2Gene算法成功训练用于识别MDS。制定并验证了一个特定的临床严重程度量表(MECPDup),其与MBA(为雷特综合征制定的量表)相关。MECPDup评分在男性中显著更高(<0.001),在早亡患者中也更高(=0.003)。它与年龄(<0.001)和重复大小(=0.044)呈显著正相关。本研究通过全面的临床和分子见解扩展了对MDS的认识。基于人工智能的面部识别技术的整合以及MECPDup严重程度量表的制定有望提高诊断准确性、监测疾病进展并评估受MDS影响个体的治疗反应。