Suppr超能文献

从整体到基因:PMM2-CDG 的早期预测性畸形特征。

From gestalt to gene: early predictive dysmorphic features of PMM2-CDG.

机构信息

Genetics and Molecular Medicine Department and Pediatric Institute of Rare Diseases (IPER), Hospital Sant Joan de Déu, Barcelona, Spain.

Statistics Department, Fundació Sant Joan de Déu, Barcelona, Spain.

出版信息

J Med Genet. 2019 Apr;56(4):236-245. doi: 10.1136/jmedgenet-2018-105588. Epub 2018 Nov 21.

Abstract

INTRODUCTION

Phosphomannomutase-2 deficiency (PMM2-CDG) is associated with a recognisable facial pattern. There are no early severity predictors for this disorder and no phenotype-genotype correlation. We performed a detailed dysmorphology evaluation to describe facial gestalt and its changes over time, to train digital recognition facial analysis tools and to identify early severity predictors.

METHODS

Paediatric PMM2-CDG patients were evaluated and compared with controls. A computer-assisted recognition tool was trained. Through the evaluation of dysmorphic features (DFs), a simple categorisation was created and correlated with clinical and neurological scores, and neuroimaging.

RESULTS

Dysmorphology analysis of 31 patients (4-19 years of age) identified eight major DFs (strabismus, upslanted eyes, long fingers, lipodystrophy, wide mouth, inverted nipples, long philtrum and joint laxity) with predictive value using receiver operating characteristic (ROC) curveanalysis (p<0.001). Dysmorphology categorisation using lipodystrophy and inverted nipples was employed to divide patients into three groups that are correlated with global clinical and neurological scores, and neuroimaging (p=0.005, 0.003 and 0.002, respectively). After Face2Gene training, PMM2-CDG patients were correctly identified at different ages.

CONCLUSIONS

PMM2-CDG patients' DFs are consistent and inform about clinical severity when no clear phenotype-genotype correlation is known. We propose a classification of DFs into major and minor with diagnostic risk implications. At present, Face2Gene is useful to suggest PMM2-CDG. Regarding the prognostic value of DFs, we elaborated a simple severity dysmorphology categorisation with predictive value, and we identified five major DFs associated with clinical severity. Both dysmorphology and digital analysis may help physicians to diagnose PMM2-CDG sooner.

摘要

简介

磷酸甘露糖变位酶 2 缺乏症(PMM2-CDG)与可识别的面部模式有关。这种疾病没有早期严重程度的预测指标,也没有表型-基因型相关性。我们进行了详细的发育畸形评估,以描述面部整体特征及其随时间的变化,训练数字识别面部分析工具,并确定早期严重程度的预测指标。

方法

对儿科 PMM2-CDG 患者进行评估,并与对照组进行比较。训练了一种计算机辅助识别工具。通过对发育畸形特征(DFs)的评估,创建了一个简单的分类,并与临床和神经评分以及神经影像学相关联。

结果

对 31 名(4-19 岁)患者的发育畸形分析确定了 8 种主要的 DFs(斜视、上斜视眼、手指长、脂肪营养不良、口宽、乳头内陷、人中长和关节松弛),使用接收器操作特征(ROC)曲线分析具有预测价值(p<0.001)。使用脂肪营养不良和乳头内陷对发育畸形进行分类,将患者分为三组,与全球临床和神经评分以及神经影像学相关联(p=0.005、0.003 和 0.002,分别)。经过 Face2Gene 训练后,PMM2-CDG 患者在不同年龄段均能被正确识别。

结论

PMM2-CDG 患者的 DFs 是一致的,并在没有明确的表型-基因型相关性时提示临床严重程度。我们提出了一种将 DFs 分为主要和次要的分类,具有诊断风险意义。目前,Face2Gene 有助于提示 PMM2-CDG。关于 DFs 的预后价值,我们详细描述了一种具有预测价值的简单严重发育畸形分类,并确定了与临床严重程度相关的 5 种主要 DFs。发育畸形和数字分析都可以帮助医生更早地诊断 PMM2-CDG。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验