Suppr超能文献

聚类算法驱动的TRBC1限制性克隆性T细胞群体检测比手动设门分析产生更好的结果。

Clustering Algorithm-Driven Detection of TRBC1-Restricted Clonal T-Cell Populations Produces Better Results than Manual Gating Analysis.

作者信息

Buček Simon, Brožič Andreja, Miceska Simona, Gašljević Gorana, Kloboves Prevodnik Veronika

机构信息

Department of Cytopathology, Institute of Oncology, Zaloška Cesta 2, 1000 Ljubljana, Slovenia.

Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia.

出版信息

Int J Mol Sci. 2024 Dec 28;26(1):170. doi: 10.3390/ijms26010170.

Abstract

Flow cytometric (FC) immunophenotyping and T-cell receptor (TCR) gene rearrangement studies are essential ancillary methods for the characterisation of T-cell lymphomas. Traditional manual gating and polymerase chain reaction (PCR)-based analyses can be labour-intensive, operator-dependent, and have limitations in terms of sensitivity and specificity. The objective of our study was to investigate the efficacy of the Phenograph and t-SNE algorithms together with an antibody specific for the TCR β-chain constant region 1 (TRBC1) to identify monoclonal T-cell populations. FC- and PCR-based clonality analyses were performed on 275 samples of T-cell lymphomas, B-cell lymphomas, and reactive lymphocytic proliferations. Monotypic T-cell populations were identified in 65.1% of samples by manual gating and 72.4% by algorithm-driven analysis, while PCR-based analysis detected clonal T cells in 68.0%. Of the 262 monotypic populations identified, 46.6% were classified as T-cell lymphomas and 53.4% as T-cell populations of uncertain significance (T-CUS). Algorithm-driven gating identified monotypic populations that were overlooked by manual gating or PCR-based methods. The study highlights the difficulty in distinguishing monotypic populations as T-cell lymphoma or T-CUS. Further research is needed to establish criteria for distinguishing between these populations and to improve FC diagnostic accuracy.

摘要

流式细胞术(FC)免疫表型分析和T细胞受体(TCR)基因重排研究是T细胞淋巴瘤特征化的重要辅助方法。传统的手工设门和基于聚合酶链反应(PCR)的分析可能劳动强度大、依赖操作人员,并且在敏感性和特异性方面存在局限性。我们研究的目的是探讨Phenograph和t-SNE算法以及针对TCRβ链恒定区1(TRBC1)的特异性抗体识别单克隆T细胞群体的有效性。对275例T细胞淋巴瘤、B细胞淋巴瘤和反应性淋巴细胞增殖样本进行了基于FC和PCR的克隆性分析。通过手工设门在65.1%的样本中鉴定出单型T细胞群体,通过算法驱动分析在72.4%的样本中鉴定出单型T细胞群体,而基于PCR的分析在68.0%的样本中检测到克隆性T细胞。在鉴定出的262个单型群体中,46.6%被归类为T细胞淋巴瘤,53.4%被归类为意义未明的T细胞群体(T-CUS)。算法驱动设门鉴定出了被手工设门或基于PCR的方法遗漏的单型群体。该研究突出了区分单型群体是T细胞淋巴瘤还是T-CUS的困难。需要进一步研究以建立区分这些群体的标准并提高FC诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2db1/11720138/4ae1d473d956/ijms-26-00170-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验