文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ZnSnO@SiO@5-氟尿嘧啶纳米颗粒作为上颌骨缺损的添加剂

ZnSnO@SiO@5-FU Nanoparticles as an Additive for Maxillary Bone Defects.

作者信息

Rehner Costache Ana Maria Gianina, Bratu Andreea Gabriela, Bîrcă Alexandra Cătălina, Niculescu Adelina-Gabriela, Holban Alina Maria, Hudiță Ariana, Bîclesanu Florentina Cornelia, Balaure Paul Cătălin, Pangică Anna Maria, Grumezescu Alexandru Mihai, Croitoru George-Alexandru

机构信息

Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania.

Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania.

出版信息

Int J Mol Sci. 2024 Dec 29;26(1):194. doi: 10.3390/ijms26010194.


DOI:10.3390/ijms26010194
PMID:39796051
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11720676/
Abstract

This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation. SEM characterization revealed the micro-spherical particles of ZnSnO assembled by an agglomeration of nanorods, exhibiting dimensions and morphological characteristics that were consistent after the addition of both the SiO shell and 5-FU. Fourier-transformed infrared spectroscopy provided solid proof of the successful synthesis of ZnSnO, ZnSnO@SiO, and ZnSnO@SiO@5-FU, confirming the presence of expected functional groups. The SiO layer improved nanoparticle stability in the solution, as indicated by zeta potential measurements, while adding 5-FU significantly increased biocompatibility and targeting efficiency. The existence of the SiO shell and 5-FU is also confirmed by the hydrodynamic diameter, indicating an increase in particle size after incorporating both compounds. Antibacterial assays demonstrated a selective efficacy against Gram-positive bacteria, with ZnSnO@SiO@5-FU showing the strongest inhibitory effects. Biofilm inhibition studies further confirmed the nanoparticles' effectiveness in preventing bacterial colonization. Cytotoxicity tests on the A-431 human epidermoid carcinoma cell line revealed a dose-dependent reduction in cell viability, highlighting the potential of 5-FU for targeted cancer treatment. These findings highlight the potential of ZnSnO@SiO@5-FU nanoparticles as a multifunctional additive for bone fillers, offering enhanced antimicrobial and antitumor capabilities.

摘要

本研究探究了ZnSnO@SiO@5-FU纳米颗粒的合成,该纳米颗粒作为一种添加剂用于牙颌面重建中的骨填充材料。合成了ZnSnO纳米颗粒并包覆SiO壳层,随后加入5-氟尿嘧啶(5-FU),旨在增强传统填充材料的治疗性能。使用X射线衍射进行的结构分析证实,存在的是ZnSnO单晶相,在包覆SiO和加入5-FU后其结晶度得以保留。扫描电子显微镜(SEM)表征显示,ZnSnO的微球形颗粒由纳米棒团聚而成,在添加SiO壳层和5-FU后,其尺寸和形态特征保持一致。傅里叶变换红外光谱为成功合成ZnSnO、ZnSnO@SiO和ZnSnO@SiO@5-FU提供了确凿证据,证实了预期官能团的存在。ζ电位测量表明,SiO层提高了纳米颗粒在溶液中的稳定性,而加入5-FU显著提高了生物相容性和靶向效率。流体动力学直径也证实了SiO壳层和5-FU的存在,表明加入这两种化合物后粒径增大。抗菌试验表明对革兰氏阳性菌具有选择性疗效,其中ZnSnO@SiO@5-FU显示出最强的抑制作用。生物膜抑制研究进一步证实了纳米颗粒在防止细菌定植方面的有效性。对A-431人表皮样癌细胞系的细胞毒性测试显示,细胞活力呈剂量依赖性降低,突出了5-FU在靶向癌症治疗方面的潜力。这些发现突出了ZnSnO@SiO@5-FU纳米颗粒作为骨填充材料多功能添加剂的潜力,具有增强抗菌和抗肿瘤能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/4d0864a4d9c4/ijms-26-00194-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/0bb9392d9e2d/ijms-26-00194-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/bafc5191b464/ijms-26-00194-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/7c875941f92d/ijms-26-00194-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/2d46792bea19/ijms-26-00194-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/fb6600b8f85c/ijms-26-00194-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/2043a190fbd6/ijms-26-00194-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/3723b2a2515c/ijms-26-00194-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/344f17714a4d/ijms-26-00194-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/3ee9198d3f11/ijms-26-00194-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/3e5727c686d6/ijms-26-00194-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/1c82ad8f7b79/ijms-26-00194-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/c6a50193690f/ijms-26-00194-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/4d0864a4d9c4/ijms-26-00194-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/0bb9392d9e2d/ijms-26-00194-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/bafc5191b464/ijms-26-00194-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/7c875941f92d/ijms-26-00194-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/2d46792bea19/ijms-26-00194-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/fb6600b8f85c/ijms-26-00194-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/2043a190fbd6/ijms-26-00194-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/3723b2a2515c/ijms-26-00194-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/344f17714a4d/ijms-26-00194-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/3ee9198d3f11/ijms-26-00194-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/3e5727c686d6/ijms-26-00194-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/1c82ad8f7b79/ijms-26-00194-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/c6a50193690f/ijms-26-00194-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d96/11720676/4d0864a4d9c4/ijms-26-00194-g013.jpg

相似文献

[1]
ZnSnO@SiO@5-FU Nanoparticles as an Additive for Maxillary Bone Defects.

Int J Mol Sci. 2024-12-29

[2]
Core-Shell Magnetic Nanocarriers: FeO-Hydroxyapatite/Polysuccinimide Hybrids for Enhanced Oral Bioavailability of Fluorouracil.

Int J Nanomedicine. 2025-3-20

[3]
Synthesis and characterization of FeO@SiO@PDA@Ag core-shell nanoparticles and biological application on human lung cancer cell line and antibacterial strains.

Artif Cells Nanomed Biotechnol. 2024-12

[4]
Multifunctional Tetracycline-Loaded Silica-Coated Core-Shell Magnetic Nanoparticles: Antibacterial, Antibiofilm, and Cytotoxic Activities.

ACS Appl Bio Mater. 2022-4-18

[5]
Assessment of the Effect of Surface Modification of Metal Oxides on Silver Nanoparticles: Optical Properties and Potential Toxicity.

Cell Biochem Biophys. 2024-6

[6]
Synthesis of Biotin-Modified Galactosylated Chitosan Nanoparticles and Their Characteristics in Vitro and in Vivo.

Cell Physiol Biochem. 2018

[7]
Physical PEGylation Enhances The Cytotoxicity Of 5-Fluorouracil-Loaded PLGA And PCL Nanoparticles.

Int J Nanomedicine. 2019-11-28

[8]
Phytofabrication of biocompatible zinc oxide nanoparticle using Gymnema sylvestre and its potent in vitro antibacterial, antibiofilm, and cytotoxicity against human breast cancer cells (MDA-MB-231).

Bioprocess Biosyst Eng. 2024-8

[9]
Green-synthesized α-FeO-nanoparticles as potent antibacterial, anti-biofilm and anti-virulence agent against pathogenic bacteria.

BMC Microbiol. 2024-12-23

[10]
Development of a novel functional core-shell-shell nanoparticles: From design to anti-bacterial applications.

J Colloid Interface Sci. 2017-12-2

本文引用的文献

[1]
5-Fluorouracil Inhibits Bacterial Growth and Reduces Biofilm in Addition to Having Synergetic Effects with Gentamicin Against .

Microorganisms. 2024-11-7

[2]
Unraveling the Effects of Strain-Induced Defect Engineering on the Visible-Light-Driven Photodynamic Performance of ZnSnO Nanoparticles Modified by Larger Barium Cations.

ACS Appl Bio Mater. 2024-12-16

[3]
Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies.

Regen Biomater. 2024-7-4

[4]
Deciphering the Antibacterial Mechanisms of 5-Fluorouracil in through Biochemical and Transcriptomic Analyses.

Antibiotics (Basel). 2024-6-5

[5]
Engineering antibacterial bioceramics: Design principles and mechanisms of action.

Mater Today Bio. 2024-4-27

[6]
Tackling Antibiotic Resistance: Exploring 5-Fluorouracil as a Promising Antimicrobial Strategy for the Treatment of Infection.

Animals (Basel). 2024-4-24

[7]
Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration.

Biology (Basel). 2024-4-2

[8]
High-Pressure Behavior of CaSnO, SrSnO, and ZnSnO.

J Phys Chem C Nanomater Interfaces. 2024-1-12

[9]
Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillers.

ACS Mater Au. 2023-8-1

[10]
Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances.

Bioact Mater. 2023-11-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索