Jiang Zhengxuan, Ding Guowen, Luo Xinyao, Wang Shenyun
Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044, China.
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
Sensors (Basel). 2024 Dec 27;25(1):119. doi: 10.3390/s25010119.
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes. Simulation results demonstrate that the metasurface achieves a cross-polarized transmission coefficient of 0.82 without laser illumination and a co-polarization reflection coefficient of 0.8 under laser illumination. Leveraging the geometric phase principle, adjustments to the rotational orientation of the reverse split ring and dual -shaped perovskite structures enable independent control of transmission and reflection phases. Furthermore, the proposed metasurface induces a +1 order orbital angular momentum in transmission and +2 order in reflection, facilitating beam deflection through metasurface convolution principles. Imaging using metasurface digital imaging technology showcases patterns "NUIST" in reflection and "LOONG" in transmission, illustrating the metasurface design principles via the proposed metasurface. The proposed metasurface's capability for full-space control and reconfigurability presents promising applications in advanced imaging systems, dynamic beam steering, and tunable terahertz devices, highlighting its potential for future technological advancements.
我们展示了一种新型的光可重构超表面,该超表面旨在在整个空间域内对具有相同入射极化和频率的电磁波进行独立且高效的控制。所提出的超表面具有三层结构:顶层包含填充有钙钛矿材料的金圆形裂环谐振器(CSRR)和双形状钙钛矿谐振器;中间层是聚酰亚胺电介质;底层是包含填充有金的反向取向圆形裂环谐振器的钙钛矿衬底。通过调制激光束的强度,我们在透射和反射模式下都实现了对入射圆极化太赫兹波的自主操纵。仿真结果表明,该超表面在无激光照射时实现了0.82的交叉极化透射系数,在激光照射下实现了0.8的共极化反射系数。利用几何相位原理,对反向裂环和双形状钙钛矿结构的旋转取向进行调整,可以独立控制透射和反射相位。此外,所提出的超表面在透射中诱导出 +1 阶轨道角动量,在反射中诱导出 +2 阶轨道角动量,通过超表面卷积原理促进光束偏转。使用超表面数字成像技术进行的成像展示了反射中的“NUIST”图案和透射中的“LOONG”图案,通过所提出的超表面说明了超表面设计原理。所提出的超表面的全空间控制和可重构能力在先进成像系统、动态光束转向和可调太赫兹器件中具有广阔的应用前景,突出了其在未来技术进步中的潜力。