运动想象脑机接口系统中减少通道数量时的性能提升

Performance Improvement with Reduced Number of Channels in Motor Imagery BCI System.

作者信息

Özkahraman Ali, Ölmez Tamer, Dokur Zümray

机构信息

Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey.

Department of Electrical and Electronics Engineering, Iskenderun Technical University, 31200 Iskenderun, Hatay, Turkey.

出版信息

Sensors (Basel). 2024 Dec 28;25(1):120. doi: 10.3390/s25010120.

Abstract

Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone. EOG channels provide useful information for MI signal classification, countering the notion that they only introduce eye-related noise. The study uses advanced deep learning techniques, including multiple 1D convolution blocks and depthwise-separable convolutions, to optimize classification accuracy. The findings in this study are tested on two datasets: dataset 1, the BCI Competition IV Dataset IIa (4-class MI), and dataset 2, the Weibo dataset (7-class MI). The performance for dataset 1, utilizing 3 EEG and 3 EOG channels (6 channels total), is of 83% accuracy, while dataset 2, with 3 EEG and 2 EOG channels (5 channels total), achieves an accuracy of 61%, demonstrating the effectiveness of the proposed channel reduction method and deep learning model.

摘要

对运动想象(MI)脑电图(EEG)信号进行分类对于脑机接口(BCI)系统至关重要,但挑战依然存在。一个关键挑战是减少通道数量以提高灵活性、便携性和计算效率,特别是在多类场景中,需要更多通道才能进行准确分类。本研究表明,将眼电图(EOG)通道与减少的EEG通道集相结合比仅依赖大量EEG通道更有效。EOG通道为MI信号分类提供了有用信息,这与它们只会引入与眼睛相关的噪声这一观点相悖。该研究使用了先进的深度学习技术,包括多个一维卷积块和深度可分离卷积,以优化分类准确率。本研究的结果在两个数据集上进行了测试:数据集1,即脑机接口竞赛IV数据集IIa(4类MI),以及数据集2,即微博数据集(7类MI)。对于数据集1,使用3个EEG通道和3个EOG通道(总共6个通道),准确率为83%,而对于数据集2,使用3个EEG通道和2个EOG通道(总共5个通道),准确率达到61%,证明了所提出的通道减少方法和深度学习模型的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a1f/11723053/b7bed3f5635c/sensors-25-00120-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索