Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China.
Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China.
Neural Netw. 2019 Oct;118:262-270. doi: 10.1016/j.neunet.2019.07.008. Epub 2019 Jul 15.
Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels.
多通道脑电数据通常是基于运动想象(MI)的脑机接口(BCI)进行空间模式识别所必需的。在某种程度上,包含冗余信息和噪声的某些通道的信号可能会降低 BCI 的性能。我们假设当参与者执行 MI 任务时,与 MI 相关的通道应该包含共同信息。基于这一假设,提出了一种基于相关的通道选择(CCS)方法,以选择包含更多相关信息的通道。目的是提高基于 MI 的 BCI 的分类性能。此外,还使用了一种新的正则化共空间模式(RCSP)方法来提取有效特征。最后,使用具有径向基函数(RBF)核的支持向量机(SVM)分类器来准确识别 MI 任务。在三个公共 EEG 数据集(BCI 竞赛 IV 数据集 1、BCI 竞赛 III 数据集 IVa 和 BCI 竞赛 III 数据集 IIIa)上进行了实验研究,以验证所提出方法的有效性。结果表明,与使用所有通道的算法(AC)相比,当使用 CSP 提取特征时,CCS 算法获得了更高的分类精度(数据集 1 为 78%,数据集 2 为 86.6%,数据集 3 为 91.3%)。此外,当使用 CCS 选择通道时,RCSP 可以进一步提高分类精度(数据集 1 为 81.6%,数据集 2 为 87.4%,数据集 3 为 91.9%)。