Suppr超能文献

用于微波雷达人体活动识别的多尺度残差加权分类网络

Multiscale Residual Weighted Classification Network for Human Activity Recognition in Microwave Radar.

作者信息

Gao Yukun, Cao Lin, Zhao Zongmin, Wang Dongfeng, Fu Chong, Guo Yanan

机构信息

School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China.

Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100101, China.

出版信息

Sensors (Basel). 2025 Jan 1;25(1):197. doi: 10.3390/s25010197.

Abstract

Human activity recognition by radar sensors plays an important role in healthcare and smart homes. However, labeling a large number of radar datasets is difficult and time-consuming, and it is difficult for models trained on insufficient labeled data to obtain exact classification results. In this paper, we propose a multiscale residual weighted classification network with large-scale, medium-scale, and small-scale residual networks. Firstly, an MRW image encoder is used to extract salient feature representations from all time-Doppler images through contrastive learning. This can extract the representative vector of each image and also obtain the pre-training parameters of the MRW image encoder. During the pre-training process, large-scale residual networks, medium-scale residual networks, and small-scale residual networks are used to extract global information, texture information, and semantic information, respectively. Moreover, the time-channel weighting mechanism can allocate weights to important time and channel dimensions to achieve more effective extraction of feature information. The model parameters obtained from pre-training are frozen, and the classifier is added to the backend. Finally, the classifier is fine-tuned using a small amount of labeled data. In addition, we constructed a new dataset with eight dangerous activities. The proposed MRW-CN model was trained on this dataset and achieved a classification accuracy of 96.9%. We demonstrated that our method achieves state-of-the-art performance. The ablation analysis also demonstrated the role of multi-scale convolutional kernels and time-channel weighting mechanisms in classification.

摘要

雷达传感器的人体活动识别在医疗保健和智能家居中发挥着重要作用。然而,标记大量雷达数据集既困难又耗时,并且在不足的标记数据上训练的模型难以获得准确的分类结果。在本文中,我们提出了一种具有大规模、中规模和小规模残差网络的多尺度残差加权分类网络。首先,使用MRW图像编码器通过对比学习从所有时间-多普勒图像中提取显著特征表示。这可以提取每个图像的代表性向量,还可以获得MRW图像编码器的预训练参数。在预训练过程中,大规模残差网络、中规模残差网络和小规模残差网络分别用于提取全局信息、纹理信息和语义信息。此外,时间通道加权机制可以为重要的时间和通道维度分配权重,以实现更有效地提取特征信息。将预训练获得的模型参数冻结,并在后端添加分类器。最后,使用少量标记数据对分类器进行微调。此外,我们构建了一个包含八种危险活动的新数据集。所提出的MRW-CN模型在该数据集上进行训练,分类准确率达到了96.9%。我们证明了我们的方法实现了当前的最优性能。消融分析也证明了多尺度卷积核和时间通道加权机制在分类中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/189a/11722888/3174a36c2166/sensors-25-00197-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验