Suppr超能文献

基于低分辨率红外传感器的跨领域人体活动识别。

Cross-Domain Human Activity Recognition Using Low-Resolution Infrared Sensors.

机构信息

Department of Communications Engineering, University of the Basque Country, 48013 Bilbao, Spain.

Department of Electrical Engineering, Tampere University, 33100 Tampere, Finland.

出版信息

Sensors (Basel). 2024 Oct 2;24(19):6388. doi: 10.3390/s24196388.

Abstract

This paper investigates the feasibility of cross-domain recognition for human activities captured using low-resolution 8 × 8 infrared sensors in indoor environments. To achieve this, a novel prototype recurrent convolutional network (PRCN) was evaluated using a few-shot learning strategy, classifying up to eleven activity classes in scenarios where one or two individuals engaged in daily tasks. The model was tested on two independent datasets, with real-world measurements. Initially, three different networks were compared as feature extractors within the prototype network. Following this, a cross-domain evaluation was conducted between the real datasets. The results demonstrated the model's effectiveness, showing that it performed well regardless of the diversity of samples in the training dataset.

摘要

本文研究了在室内环境中使用低分辨率 8×8 红外传感器捕获的人体活动进行跨领域识别的可行性。为此,使用少样本学习策略评估了一种新型原型递归卷积网络(PRCN),对一两个人执行日常任务的场景中的十一个活动类别进行分类。该模型在两个具有真实测量值的独立数据集上进行了测试。首先,在原型网络中比较了三个不同的网络作为特征提取器。之后,在真实数据集之间进行了跨领域评估。结果表明了该模型的有效性,无论训练数据集中样本的多样性如何,它都能很好地执行任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45aa/11479319/c075bcc841ca/sensors-24-06388-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验