Suppr超能文献

CTHNet:一种用于利用高分辨率遥感影像识别黄土高原地区滑坡的卷积神经网络-Transformer混合网络

CTHNet: A CNN-Transformer Hybrid Network for Landslide Identification in Loess Plateau Regions Using High-Resolution Remote Sensing Images.

作者信息

Li Juan, Zhang Jin, Fu Yongyong

机构信息

College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

Shanxi Institute of Surveying, Mapping and Geo-Information, Taiyuan 030001, China.

出版信息

Sensors (Basel). 2025 Jan 6;25(1):273. doi: 10.3390/s25010273.

Abstract

The Loess Plateau in northwest China features fragmented terrain and is prone to landslides. However, the complex environment of the Loess Plateau, combined with the inherent limitations of convolutional neural networks (CNNs), often results in false positives and missed detection for deep learning models based on CNNs when identifying landslides from high-resolution remote sensing images. To deal with this challenge, our research introduced a CNN-transformer hybrid network. Specifically, we first constructed a database consisting of 1500 loess landslides and non-landslide samples. Subsequently, we proposed a neural network architecture that employs a CNN-transformer hybrid as an encoder, with the ability to extract high-dimensional, local-scale features using CNNs and global-scale features using a multi-scale lightweight transformer module, thereby enabling the automatic identification of landslides. The results demonstrate that this model can effectively detect loess landslides in such complex environments. Compared to approaches based on CNNs or transformers, such as U-Net, HCNet and TransUNet, our proposed model achieved greater accuracy, with an improvement of at least 3.81% in the F1-score. This study contributes to the automatic and intelligent identification of landslide locations and ranges on the Loess Plateau, which has significant practicality in terms of landslide investigation, risk assessment, disaster management, and related fields.

摘要

中国西北部的黄土高原地形破碎,容易发生滑坡。然而,黄土高原的复杂环境,加上卷积神经网络(CNN)的固有局限性,在基于CNN的深度学习模型从高分辨率遥感图像中识别滑坡时,常常会导致误报和漏检。为应对这一挑战,我们的研究引入了一种CNN-Transformer混合网络。具体而言,我们首先构建了一个由1500个黄土滑坡和非滑坡样本组成的数据库。随后,我们提出了一种神经网络架构,该架构采用CNN-Transformer混合体作为编码器,能够使用CNN提取高维局部尺度特征,并使用多尺度轻量级Transformer模块提取全局尺度特征,从而实现滑坡的自动识别。结果表明,该模型能够在如此复杂的环境中有效地检测黄土滑坡。与基于CNN或Transformer的方法(如U-Net、HCNet和TransUNet)相比,我们提出的模型具有更高的准确率,F1分数至少提高了3.81%。本研究有助于黄土高原滑坡位置和范围的自动智能识别,在滑坡调查、风险评估、灾害管理及相关领域具有重要的实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4181/11723458/bb21556864ba/sensors-25-00273-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验