Suppr超能文献

基于机器学习,利用前列腺特异性抗原、磁共振成像和血液学参数预测前列腺活检必要性

Machine Learning-Based Prediction of Prostate Biopsy Necessity Using PSA, MRI, and Hematologic Parameters.

作者信息

Sungur Mustafa, Aykaç Aykut, Aydin Mehmet Erhan, Celik Ozer, Kaya Coskun

机构信息

Department of Urology, Health Science University Eskisehir City Health Application and Research Center, 26080 Eskisehir, Turkey.

Department of Mathematics and Computer, Faculty of Science, Eskisehir Osmangazi University, 26130 Eskisehir, Turkey.

出版信息

J Clin Med. 2024 Dec 31;14(1):183. doi: 10.3390/jcm14010183.

Abstract

To establish a machine learning (ML) model for predicting prostate biopsy outcomes using prostate-specific antigen (PSA) values, multiparametric magnetic resonance imaging (mpMRI) findings, and hematologic parameters. The medical records of the patients who had undergone a prostate biopsy were evaluated. Laboratory findings, mpMRI findings, and prostate biopsy results were collected. Patients with benign prostate pathology were classified as Group 1, and those with prostate cancer (PCa) were classified as Group 2. The following ML algorithms were used to create the ML model: ExtraTrees classifier, Light Gradient-Boosting Machine (LGBM) classifier, eXtreme Gradient Boosting (XGB) classifier, Logistic Regression, and Random Forest classifier. A total of 244 male patients who met the inclusion criteria were included in this study. Among them, 171 (71.1%) were categorized in Group 1, and 73 (29.9%) in Group 2. The LGBM classifier model demonstrated the highest performance, achieving an accuracy rate of 81.6% and an AUC-ROC (area under the curve-receiver operating characteristic) of 78.4%, with sensitivity and specificity values of 66.7% and 88.2%, respectively, in predicting prostate biopsy outcomes. Pathological results can be predicted by ML models using PSA values, mpMRI findings, and hematologic parameters prior to a prostate biopsy, potentially reducing unnecessary biopsy procedures.

摘要

利用前列腺特异性抗原(PSA)值、多参数磁共振成像(mpMRI)结果和血液学参数建立一个用于预测前列腺活检结果的机器学习(ML)模型。对接受过前列腺活检的患者的病历进行评估。收集实验室检查结果、mpMRI检查结果和前列腺活检结果。前列腺病理为良性的患者被分类为第1组,前列腺癌(PCa)患者被分类为第2组。使用以下ML算法创建ML模型:极端随机树分类器、轻量级梯度提升机(LGBM)分类器、极端梯度提升(XGB)分类器、逻辑回归和随机森林分类器。本研究共纳入244例符合纳入标准的男性患者。其中,171例(71.1%)被分类为第1组,73例(29.9%)被分类为第2组。LGBM分类器模型表现出最高的性能,在预测前列腺活检结果时,准确率达到81.6%,曲线下面积-受试者操作特征(AUC-ROC)为78.4%,敏感性和特异性值分别为66.7%和88.2%。在前列腺活检前,可通过ML模型利用PSA值、mpMRI结果和血液学参数预测病理结果,这可能会减少不必要的活检程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a18/11721894/f4290112e2f1/jcm-14-00183-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验