Lin Jianing, Nan Yayun, Sun Jingyi, Guan Anqi, Peng Meijuan, Dai Ziyu, Mai Suying, Chen Qiong, Jiang Chen
Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
Department of Ningxia Geriatrics Medical Center, Ningxia People's Hospital, Yinchuan, 750021, China.
Inflammation. 2025 Jan 11. doi: 10.1007/s10753-024-02232-x.
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear. Utilizing both bulk transcriptome data and single-cell RNA sequencing data, we assessed the diverse expression patterns of RLRs in the lung tissues of COPD patients. A lower R-loop score was found in patients with COPD and in neutrophils. 12 machine learning algorithms (150 combinations) identified 14 hub RLRs (CBX8, EHD4, HDLBP, KDM6B, NFAT5, NLRP3, NUP214, PAFAH1B3, PINX1, PLD1, POLB, RCC2, RNF213, and VIM) associated with COPD. A RiskScore based on 14 RLRs identified two distinct COPD subtypes. Patient groups at high risk of COPD (low R-loop scores) had a higher immune score and a significant increase in neutrophils in their immune microenvironment compared to low-risk groups. PD-0325901 and QL-X-138 represent prospective COPD treatments for high-risk (low R-loop score) and low-risk (high R-loop score) patients. Finally, RT-PCR experiments confirmed expression differences of 8 RLRs (EHD4, HDLBP, NFAT5, NLRP3, PLD1, PINX1, POLB, and VIM) in COPD mice lung tissue. R-loops significantly contribute to the development of COPD and constructing predictive models based on RLRs may provide crucial insight into personalized treatment strategies for patients with COPD.
慢性阻塞性肺疾病(COPD)是一种常见的慢性炎症性气道疾病,发病率高,疾病负担重。R环是转录过程中形成的功能性染色质结构,由于其异常形成而与炎症密切相关。然而,R环调节因子(RLRs)在COPD中的作用仍不清楚。利用批量转录组数据和单细胞RNA测序数据,我们评估了COPD患者肺组织中RLRs的不同表达模式。在COPD患者和中性粒细胞中发现较低的R环评分。12种机器学习算法(150种组合)确定了14个与COPD相关的关键RLRs(CBX8、EHD4、HDLBP、KDM6B、NFAT5、NLRP3、NUP214、PAFAH1B3、PINX1、PLD1、POLB、RCC2、RNF213和VIM)。基于14个RLRs的风险评分确定了两种不同的COPD亚型。与低风险组相比,COPD高风险患者组(低R环评分)具有更高的免疫评分,其免疫微环境中的中性粒细胞显著增加。PD-0325901和QL-X-138分别代表针对高风险(低R环评分)和低风险(高R环评分)患者的前瞻性COPD治疗方法。最后,RT-PCR实验证实了8个RLRs(EHD4、HDLBP、NFAT5、NLRP3、PLD1、PINX1、POLB和VIM)在COPD小鼠肺组织中的表达差异。R环对COPD的发展有显著贡献,基于RLRs构建预测模型可能为COPD患者的个性化治疗策略提供关键见解。