Suppr超能文献

使用弱标注全切片图像的结直肠癌分类:多实例学习优化研究

Colorectal cancer classification using weakly annotated whole slide images: Multiple instance learning optimization study.

作者信息

Saeed Ahmed, Ismail Mohamed A, Ghanem Nagia M

机构信息

Computer and Systems Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.

出版信息

Comput Biol Med. 2025 Mar;186:109649. doi: 10.1016/j.compbiomed.2024.109649. Epub 2025 Jan 10.

Abstract

Colorectal cancer (CRC) is considered one of the most deadly cancer types nowadays. It is rapidly increasing due to many factors, such as unhealthy lifestyles, water and food pollution, aging, and medical diagnosis development. Detecting CRC in its early stages can help stop its growth by providing the necessary treatments, thereby saving many people's lives. There are various tests that doctors can perform to diagnose CRC; however, biopsy using histopathological images is considered the "gold standard" for CRC diagnosis. Deep learning techniques can now be leveraged to build computer-aided diagnosis (CAD) systems that can affirm if an input sample shows any symptoms of cancer and determine its stage and location with an acceptable degree of confidence. In this research, we utilize deep learning to study the CRC classification problem using weakly annotated histopathological whole slide images (WSIs). We relax the constraints of the multiple instance learning (MIL) algorithm and primarily propose WSI-label prediction functions to be integrated with MIL, which significantly enhances the performance of WSI-level classification. We also applied efficient preprocessing techniques that output a computationally power-efficient dataset representation and performed multiple experiments to compose the most efficient CAD system. Our study introduces a notable improvement over the results obtained by the baseline research where we achieved an accuracy of 93.05% compared to 84.17%. Furthermore, our results using only the weakly annotated WSIs outperformed the baseline results that are based on performing initial pre-training using a strongly annotated part of the dataset.

摘要

结直肠癌(CRC)被认为是当今最致命的癌症类型之一。由于多种因素,如不健康的生活方式、水和食物污染、老龄化以及医学诊断技术的发展,其发病率正在迅速上升。在早期阶段检测到CRC,通过提供必要的治疗可以帮助阻止其生长,从而挽救许多人的生命。医生可以进行各种测试来诊断CRC;然而,使用组织病理学图像进行活检被认为是CRC诊断的“金标准”。现在可以利用深度学习技术构建计算机辅助诊断(CAD)系统,该系统可以确定输入样本是否显示出任何癌症症状,并以可接受的置信度确定其阶段和位置。在本研究中,我们利用深度学习,使用弱注释的组织病理学全切片图像(WSIs)来研究CRC分类问题。我们放宽了多实例学习(MIL)算法的约束,并主要提出将WSI标签预测函数与MIL集成,这显著提高了WSI级分类的性能。我们还应用了高效的预处理技术,输出计算效率高的数据集表示,并进行了多次实验以构建最有效的CAD系统。我们的研究相对于基线研究所获得的结果有显著改进,我们实现了93.05%的准确率,而基线研究的准确率为84.17%。此外,我们仅使用弱注释WSIs的结果优于基于使用数据集的强注释部分进行初始预训练的基线结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验