Suppr超能文献

蛙类物种微管动力学中温度适应的机制基础。

Mechanistic basis of temperature adaptation in microtubule dynamics across frog species.

作者信息

Troman Luca, de Gaulejac Ella, Biswas Abin, Stiens Jennifer, Kuropka Benno, Moores Carolyn A, Reber Simone

机构信息

Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.

IRI Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.

出版信息

Curr Biol. 2025 Feb 3;35(3):612-628.e6. doi: 10.1016/j.cub.2024.12.022. Epub 2025 Jan 10.

Abstract

Cellular processes are remarkably effective across diverse temperature ranges, even with highly conserved proteins. In the context of the microtubule cytoskeleton, which is critically involved in a wide range of cellular activities, this is particularly striking, as tubulin is one of the most conserved proteins while microtubule dynamic instability is highly temperature sensitive. Here, we leverage the diversity of natural tubulin variants from three closely related frog species that live at different temperatures. We determine the microtubule structure across all three species at between 3.0 and 3.6 Å resolution by cryo-electron microscopy and find small differences at the β-tubulin lateral interactions. Using in vitro reconstitution assays and quantitative biochemistry, we show that tubulin's free energy scales inversely with temperature. The observed weakening of lateral contacts and the low apparent activation energy for tubulin incorporation provide an explanation for the overall stability and higher growth rates of microtubules in cold-adapted frog species. This study thus broadens our conceptual framework for understanding microtubule dynamics and provides insights into how conserved cellular processes are tailored to different ecological niches.

摘要

即使是高度保守的蛋白质,细胞过程在不同温度范围内也非常有效。在微管细胞骨架的背景下,微管细胞骨架至关重要地参与了广泛的细胞活动,这一点尤为显著,因为微管蛋白是最保守的蛋白质之一,而微管动态不稳定性对温度高度敏感。在这里,我们利用来自三种生活在不同温度下的密切相关青蛙物种的天然微管蛋白变体的多样性。我们通过冷冻电子显微镜在3.0至3.6埃的分辨率下确定了所有三种物种的微管结构,并在β-微管蛋白横向相互作用中发现了微小差异。使用体外重组试验和定量生物化学方法,我们表明微管蛋白的自由能与温度成反比。观察到的横向接触减弱以及微管蛋白掺入的低表观活化能,为适应寒冷的青蛙物种中微管的整体稳定性和更高生长速率提供了解释。因此,这项研究拓宽了我们理解微管动力学的概念框架,并提供了关于保守的细胞过程如何适应不同生态位的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验