Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892.
Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom.
Mol Biol Cell. 2017 Dec 1;28(25):3564-3572. doi: 10.1091/mbc.E17-02-0124. Epub 2017 Oct 11.
Microtubules polymerize and depolymerize stochastically, a behavior essential for cell division, motility, and differentiation. While many studies advanced our understanding of how microtubule-associated proteins tune microtubule dynamics in trans, we have yet to understand how tubulin genetic diversity regulates microtubule functions. The majority of in vitro dynamics studies are performed with tubulin purified from brain tissue. This preparation is not representative of tubulin found in many cell types. Here we report the 4.2-Å cryo-electron microscopy (cryo-EM) structure and in vitro dynamics parameters of α1B/βI+βIVb microtubules assembled from tubulin purified from a human embryonic kidney cell line with isoform composition characteristic of fibroblasts and many immortalized cell lines. We find that these microtubules grow faster and transition to depolymerization less frequently compared with brain microtubules. Cryo-EM reveals that the dynamic ends of α1B/βI+βIVb microtubules are less tapered and that these tubulin heterodimers display lower curvatures. Interestingly, analysis of EB1 distributions at dynamic ends suggests no differences in GTP cap sizes. Last, we show that the addition of recombinant α1A/βIII tubulin, a neuronal isotype overexpressed in many tumors, proportionally tunes the dynamics of α1B/βI+βIVb microtubules. Our study is an important step toward understanding how tubulin isoform composition tunes microtubule dynamics.
微管随机聚合和解聚,这一行为对细胞分裂、运动和分化至关重要。虽然许多研究增进了我们对微管相关蛋白如何在转录中调节微管动力学的理解,但我们还需要了解微管的遗传多样性如何调节微管功能。大多数体外动力学研究都是用从脑组织中纯化的微管来进行的。这种制剂不能代表许多细胞类型中发现的微管。在这里,我们报告了从具有成纤维细胞和许多永生化细胞系特征的同工型组成的人胚肾细胞系中纯化的微管组装的α1B/βI+βIVb 微管的 4.2-Å 冷冻电镜(cryo-EM)结构和体外动力学参数。我们发现与脑微管相比,这些微管的生长速度更快,解聚转变的频率更低。cryo-EM 揭示了α1B/βI+βIVb 微管的动态末端不太锥形,这些微管二聚体显示出较低的曲率。有趣的是,对动态末端的 EB1 分布的分析表明 GTP 帽大小没有差异。最后,我们表明,重组α1A/βIII 微管的添加(在许多肿瘤中过度表达的神经元同工型)成比例地调节了α1B/βI+βIVb 微管的动力学。我们的研究是理解微管同工型组成如何调节微管动力学的重要一步。