Suppr超能文献

通过单光束实现的时变三维光学扭矩

Time-varying 3D optical torque via a single beam.

作者信息

Wu Yi-Jing, Zhuang Jing-Han, Yu Pan-Pan, Liu Yi-Fan, Wang Zi-Qiang, Li Yin-Mei, Qiu Cheng-Wei, Gong Lei

机构信息

Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, China.

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.

出版信息

Nat Commun. 2025 Jan 11;16(1):593. doi: 10.1038/s41467-024-55781-y.

Abstract

The spin angular momentum (SAM) plays a significant role in light-matter interactions. It is well known that light carrying SAM can exert optical torques on micro-objects and drive rotations, but 3D rotation around an arbitrary axis remains challenging. Here, we demonstrate full control of the 3D optical torque acting on a trapped microparticle by tailoring the vectorial SAM transfer. To this end, we construct a theoretical relationship between the 3D SAM vector of a tightly focused field and the local polarization helicity of the incident field. In practice, a single-beam configuration is proposed for dynamic 3D SAM manipulation, facilitating time-varying vectorial SAM transfer to particles. Control of 3D optical torque on birefringent microparticles is validated by simulations, and dynamic 3D rotations of optically trapped particles around arbitrary axes are experimentally demonstrated. Our work paves the way for manipulating 3D optical torque and particle spinning, which is expected to boost new functionalities and applications of optical tweezers.

摘要

自旋角动量(SAM)在光与物质的相互作用中起着重要作用。众所周知,携带SAM的光可以对微观物体施加光扭矩并驱动其旋转,但围绕任意轴的三维旋转仍然具有挑战性。在此,我们通过定制矢量SAM转移,展示了对作用于捕获的微粒上的三维光扭矩的完全控制。为此,我们构建了一个紧密聚焦场的三维SAM矢量与入射场的局部偏振螺旋度之间的理论关系。在实践中,我们提出了一种单光束配置用于动态三维SAM操纵,便于随时间变化的矢量SAM转移到粒子上。通过模拟验证了对双折射微粒的三维光扭矩控制,并通过实验证明了光学捕获粒子围绕任意轴的动态三维旋转。我们的工作为操纵三维光扭矩和粒子旋转铺平了道路,有望推动光镊的新功能和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/11724974/eaa07e989633/41467_2024_55781_Fig1_HTML.jpg

相似文献

1
Time-varying 3D optical torque via a single beam.
Nat Commun. 2025 Jan 11;16(1):593. doi: 10.1038/s41467-024-55781-y.
2
Controllable Microparticle Spinning via Light without Spin Angular Momentum.
Phys Rev Lett. 2024 Jun 21;132(25):253803. doi: 10.1103/PhysRevLett.132.253803.
3
Optical torque on microscopic objects.
Methods Cell Biol. 2007;82:525-61. doi: 10.1016/S0091-679X(06)82019-4.
4
Angular momentum separation in focused fractional vector beams for optical manipulation.
Opt Express. 2021 May 10;29(10):14705-14719. doi: 10.1364/OE.423357.
5
Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.
Opt Express. 2016 Sep 5;24(18):20604-12. doi: 10.1364/OE.24.020604.
8
Constant power optical tweezers with controllable torque.
Opt Lett. 2009 Jan 15;34(2):139-41. doi: 10.1364/ol.34.000139.

本文引用的文献

1
Controllable Microparticle Spinning via Light without Spin Angular Momentum.
Phys Rev Lett. 2024 Jun 21;132(25):253803. doi: 10.1103/PhysRevLett.132.253803.
2
AI-driven projection tomography with multicore fibre-optic cell rotation.
Nat Commun. 2024 Jan 2;15(1):147. doi: 10.1038/s41467-023-44280-1.
3
Optical single-pixel volumetric imaging by three-dimensional light-field illumination.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2304755120. doi: 10.1073/pnas.2304755120. Epub 2023 Jul 24.
4
Isotropically resolved label-free tomographic imaging based on tomographic moulds for optical trapping.
Light Sci Appl. 2021 May 17;10(1):102. doi: 10.1038/s41377-021-00535-4.
5
Ultrasensitive torque detection with an optically levitated nanorotor.
Nat Nanotechnol. 2020 Feb;15(2):89-93. doi: 10.1038/s41565-019-0605-9. Epub 2020 Jan 13.
6
7
Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor.
Phys Rev Lett. 2018 Jul 20;121(3):033603. doi: 10.1103/PhysRevLett.121.033603.
10
Birefringence of a normal human red blood cell and related optomechanics in an optical trap.
J Biomed Opt. 2014;19(11):115004. doi: 10.1117/1.JBO.19.11.115004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验