Shanghai Artificial Intelligence Laboratory, Longwen Road 129, Xuhui District, 200232, Shanghai, China.
Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
Nat Commun. 2024 Jan 2;15(1):147. doi: 10.1038/s41467-023-44280-1.
Optical tomography has emerged as a non-invasive imaging method, providing three-dimensional insights into subcellular structures and thereby enabling a deeper understanding of cellular functions, interactions, and processes. Conventional optical tomography methods are constrained by a limited illumination scanning range, leading to anisotropic resolution and incomplete imaging of cellular structures. To overcome this problem, we employ a compact multi-core fibre-optic cell rotator system that facilitates precise optical manipulation of cells within a microfluidic chip, achieving full-angle projection tomography with isotropic resolution. Moreover, we demonstrate an AI-driven tomographic reconstruction workflow, which can be a paradigm shift from conventional computational methods, often demanding manual processing, to a fully autonomous process. The performance of the proposed cell rotation tomography approach is validated through the three-dimensional reconstruction of cell phantoms and HL60 human cancer cells. The versatility of this learning-based tomographic reconstruction workflow paves the way for its broad application across diverse tomographic imaging modalities, including but not limited to flow cytometry tomography and acoustic rotation tomography. Therefore, this AI-driven approach can propel advancements in cell biology, aiding in the inception of pioneering therapeutics, and augmenting early-stage cancer diagnostics.
光学层析成像技术已成为一种非侵入性的成像方法,能够提供对亚细胞结构的三维洞察,从而更深入地了解细胞功能、相互作用和过程。传统的光学层析成像方法受到有限的照明扫描范围的限制,导致各向异性的分辨率和对细胞结构的不完全成像。为了解决这个问题,我们采用了紧凑的多芯光纤细胞旋转系统,该系统能够在微流控芯片内精确地对细胞进行光学操作,实现具有各向同性分辨率的全角度投影层析成像。此外,我们还展示了一种基于人工智能的层析重建工作流程,这可能是从传统的计算方法(通常需要手动处理)到完全自主过程的范式转变。通过对细胞幻影和 HL60 人癌细胞的三维重建,验证了所提出的细胞旋转层析成像方法的性能。基于学习的层析重建工作流程的多功能性为其在包括但不限于流式细胞术层析和声学旋转层析等多种层析成像模式中的广泛应用铺平了道路。因此,这种基于人工智能的方法可以推动细胞生物学的发展,有助于开创性治疗方法的诞生,并增强早期癌症诊断。