Vörös András, Bellotti Elisa, Nengnong Carinthia Balabet, Passah Mattimi, Nongrum Quinnie Doreen, Khongwir Charishma, van Eijk Anna Maria, Kessler Anne, Sarkar Rajiv, Carlton Jane M, Albert Sandra
School of Social Policy and Society, University of Birmingham, Birmingham, UK.
Department of Sociology, University of Manchester, Manchester, UK.
Sci Rep. 2025 Jan 11;15(1):1718. doi: 10.1038/s41598-025-85240-7.
The effective prevention of many infectious and non-infectious diseases relies on people concurrently adopting multiple prevention behaviors. Individual characteristics, opinion leaders, and social networks have been found to explain why people take up specific prevention behaviors. However, it remains challenging to understand how these factors shape multiple interdependent behaviors. We propose a multilevel social network framework that allows us to study the effects of individual and social factors on multiple disease prevention behaviors simultaneously. We apply this approach to examine the factors explaining eight malaria prevention behaviors, using unique interview data collected from 1529 individuals in 10 hard-to-reach, malaria-endemic villages in Meghalaya, India in 2020-2022. Statistical network modelling reveals exposure to similar behaviors in one's social network as the most important factor explaining prevention behaviors. Further, we find that households indirectly shape behaviors as key contexts for social ties. Together, these two factors are crucial for explaining the observed patterns of behaviors and social networks in the data, outweighing individual characteristics, opinion leaders, and social network size. The results highlight that social network processes may facilitate or hamper disease prevention efforts that rely on a combination of behaviors. Our approach is well suited to study these processes in the context of various diseases.
许多传染病和非传染病的有效预防依赖于人们同时采取多种预防行为。研究发现,个体特征、意见领袖和社会网络可以解释人们为何采取特定的预防行为。然而,要理解这些因素如何塑造多种相互依存的行为仍然具有挑战性。我们提出了一个多层次社会网络框架,使我们能够同时研究个体和社会因素对多种疾病预防行为的影响。我们运用这一方法,利用2020年至2022年期间从印度梅加拉亚邦10个难以到达的疟疾流行村庄的1529个人收集的独特访谈数据,来研究解释八种疟疾预防行为的因素。统计网络建模显示,在一个人的社会网络中接触到类似行为是解释预防行为的最重要因素。此外,我们发现家庭作为社会关系的关键背景,会间接影响行为。这两个因素共同作用,对于解释数据中观察到的行为模式和社会网络至关重要,其重要性超过了个体特征、意见领袖和社会网络规模。研究结果表明,社会网络过程可能会促进或阻碍依赖多种行为组合的疾病预防工作。我们的方法非常适合在各种疾病的背景下研究这些过程。