Shrader Cho-Hee, Duncan Dustin T, Driver Redd, Arroyo-Flores Juan G, Coudray Makella S, Moody Raymond, Chen Yen-Tyng, Skaathun Britt, Young Lindsay, Del Vecchio Natascha, Fujimoto Kayo, Knox Justin R, Kanamori Mariano, Schneider John A
Department of Epidemiology, Columbia University, 722 W 168th St, New York, NY, 10032, United States, 1 7033382642.
College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, United States.
JMIR Public Health Surveill. 2025 May 8;11:e64497. doi: 10.2196/64497.
Social network data are essential and informative for public health research and implementation as they provide details on individuals and their social context. For example, health information and behaviors, such as HIV-related prevention and care, may disseminate within a network or across society. By harmonizing egocentric and digital networks, researchers may construct a sociocentric-like "fuzzy" network based on a subgroup of the population.
We aimed to generate a more complete sociocentric-like "fuzzy" network by harmonizing alternative sources of egocentric and digital network data to examine relationships between participants in the Neighborhoods and Networks (N2) cohort study. Further, we examined network peer effects of the status-neutral HIV care continuum cascade.
Data were collected from January 2018 to December 2019 in Chicago, Illinois, United States, from a community health center and via peer referral sampling as part of the N2 cohort study, comprised of Black sexually minoritized men and gender expansive populations. Participants provided sociodemographics, social networks, sexual networks, mobile phone contacts, and Facebook friends list data. Lab-based information about the HIV care continuum cascade was also collected. We used an experimental approach to develop and test a fuzzy matching algorithm to construct a more complete network across social, sexual, phone, and Facebook networks using R and Excel. We calculated social network centrality measures for each of these networks and then described the HIV care continuum within the context of each network. We then used Spearman correlation and a network autocorrelation model to examine social network peer effects with HIV status and care engagement.
A total of 412 participants resulted in 2054 network connections (ties) across the confidant and sexual partner social networks (participants=387; ties=445), peer referral network (participants=412; ties=362), phone contacts (participants=273; ties=362), and Facebook network (participants=144; ties=1383), reaching the entire study sample in one fully connected "fuzzy" network. Results from the individual networks' autocorrelation model suggest there are no peer effects on status-neutral HIV care engagement. Results from the final fuzzy-like sociocentric network autocorrelation model, adjusted for HIV serostatus, suggest that participants who were proximate to network members engaged in HIV care were significantly more likely to be engaged in care (ρ=0.128, SE 0.064; P=.045).
Using alternative sources of network data allowed us to fuzzy match a more complete network: fuzzy matching may identify hidden ties among participants that were missed by examining alternative sources of network data separately. Although sociocentric studies require significant resources to implement, more complete sociocentric-like networks may be generated using a fuzzy match approach that leverages egocentric, peer referral, and digital networks. Enriching offline networks with digital network data may provide insights into characteristics and norms that egocentric approaches may not be able to capture.
社交网络数据对于公共卫生研究和实施至关重要且信息丰富,因为它们提供了关于个人及其社会背景的详细信息。例如,健康信息和行为,如与艾滋病毒相关的预防和护理,可能在一个网络内或整个社会中传播。通过协调自我中心网络和数字网络,研究人员可以基于人群的一个子群体构建一个类似社会中心的“模糊”网络。
我们旨在通过协调自我中心网络和数字网络数据的替代来源,生成一个更完整的类似社会中心的“模糊”网络,以研究邻里与网络(N2)队列研究中参与者之间的关系。此外,我们研究了状态中性艾滋病毒护理连续统一体级联的网络同伴效应。
2018年1月至2019年12月在美国伊利诺伊州芝加哥,从一个社区健康中心并通过同伴推荐抽样收集数据,作为N2队列研究的一部分,该研究由黑人性少数男性和性别扩展人群组成。参与者提供了社会人口统计学、社交网络、性网络、手机联系人以及脸书好友列表数据。还收集了基于实验室的关于艾滋病毒护理连续统一体级联的信息。我们采用一种实验方法来开发和测试一种模糊匹配算法,以使用R和Excel在社交、性、电话和脸书网络中构建一个更完整的网络。我们计算了这些网络中每个网络的社会网络中心性指标,然后在每个网络的背景下描述艾滋病毒护理连续统一体。然后,我们使用斯皮尔曼相关性和网络自相关模型来研究艾滋病毒状态和护理参与的社会网络同伴效应。
共有412名参与者在知己和性伴侣社交网络(参与者 = 387;联系 = 445)、同伴推荐网络(参与者 = 412;联系 = 362)、电话联系人(参与者 = 273;联系 = 362)和脸书网络(参与者 = 144;联系 = 1383)中产生了2054个网络连接(关系),在一个完全连接的“模糊”网络中覆盖了整个研究样本。个体网络自相关模型的结果表明,在状态中性艾滋病毒护理参与方面没有同伴效应。最终类似模糊社会中心网络自相关模型的结果,在对艾滋病毒血清学状态进行调整后,表明与参与艾滋病毒护理网络成员接近的参与者参与护理的可能性显著更高(ρ = 0.128,标准误0.064;P = 0.045)。
使用网络数据的替代来源使我们能够模糊匹配一个更完整的网络:模糊匹配可能识别出通过分别检查网络数据的替代来源而遗漏的参与者之间的隐藏关系。尽管社会中心研究需要大量资源来实施,但使用利用自我中心、同伴推荐和数字网络的模糊匹配方法可能会生成更完整的类似社会中心的网络。用数字网络数据丰富离线网络可能会提供自我中心方法可能无法捕捉的特征和规范的见解。