Suppr超能文献

通过20周超声扫描对胎儿生物特征进行全检查人工智能评估。

Whole examination AI estimation of fetal biometrics from 20-week ultrasound scans.

作者信息

Venturini Lorenzo, Budd Samuel, Farruggia Alfonso, Wright Robert, Matthew Jacqueline, Day Thomas G, Kainz Bernhard, Razavi Reza, Hajnal Jo V

机构信息

School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.

Guy's and St Thomas' NHS Foundation Trust, London, UK.

出版信息

NPJ Digit Med. 2025 Jan 11;8(1):22. doi: 10.1038/s41746-024-01406-z.

Abstract

The current approach to fetal anomaly screening is based on biometric measurements derived from individually selected ultrasound images. In this paper, we introduce a paradigm shift that attains human-level performance in biometric measurement by aggregating automatically extracted biometrics from every frame across an entire scan, with no need for operator intervention. We use a neural network to classify each frame of an ultrasound video recording. We then measure fetal biometrics in every frame where appropriate anatomy is visible. We use a Bayesian method to estimate the true value of each biometric from a large number of measurements and probabilistically reject outliers. We performed a retrospective experiment on 1457 recordings (comprising 48 million frames) of 20-week ultrasound scans, estimated fetal biometrics in those scans and compared our estimates to real-time manual measurements. Our method achieves human-level performance in estimating fetal biometrics and estimates well-calibrated credible intervals for the true biometric value.

摘要

当前的胎儿异常筛查方法基于从单独选择的超声图像中得出的生物特征测量。在本文中,我们引入了一种范式转变,即通过汇总在整个扫描过程中从每一帧自动提取的生物特征来实现生物特征测量的人类水平性能,而无需操作员干预。我们使用神经网络对超声视频记录的每一帧进行分类。然后,在可见适当解剖结构的每一帧中测量胎儿生物特征。我们使用贝叶斯方法从大量测量中估计每个生物特征的真实值,并概率性地剔除异常值。我们对20周超声扫描的1457份记录(包含4800万帧)进行了回顾性实验,在这些扫描中估计胎儿生物特征,并将我们的估计值与实时手动测量值进行比较。我们的方法在估计胎儿生物特征方面达到了人类水平的性能,并为真实生物特征值估计了校准良好的可信区间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3753/11724865/5c29f2d2267b/41746_2024_1406_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验