Suppr超能文献

人工智能在胎儿生长受限管理中的应用:一篇叙述性综述。

Artificial Intelligence in Fetal Growth Restriction Management: A Narrative Review.

作者信息

Pierucci Ugo Maria, Tonni Gabriele, Pelizzo Gloria, Paraboschi Irene, Werner Heron, Ruano Rodrigo

机构信息

Department of Pediatric Surgery, "V. Buzzi" Children's Hospital, Milan, Italy.

Department of Obstetrics & Neonatology, and, Researcher, Università degli Studi di Modena e Reggio Emilia-Sede di Reggio Emilia, Reggio Emilia, Italy.

出版信息

J Clin Ultrasound. 2025 May;53(4):825-831. doi: 10.1002/jcu.23918. Epub 2025 Jan 29.

Abstract

This narrative review examines the integration of Artificial Intelligence (AI) in prenatal care, particularly in managing pregnancies complicated by Fetal Growth Restriction (FGR). AI provides a transformative approach to diagnosing and monitoring FGR by leveraging advanced machine-learning algorithms and extensive data analysis. Automated fetal biometry using AI has demonstrated significant precision in identifying fetal structures, while predictive models analyzing Doppler indices and maternal characteristics improve the reliability of adverse outcome predictions. AI has enabled early detection and stratification of FGR risk, facilitating targeted monitoring strategies and individualized delivery plans, potentially improving neonatal outcomes. For instance, studies have shown enhancements in detecting placental insufficiency-related abnormalities when AI tools are integrated with traditional ultrasound techniques. This review also explores challenges such as algorithm bias, ethical considerations, and data standardization, underscoring the importance of global accessibility and regulatory frameworks to ensure equitable implementation. The potential of AI to revolutionize prenatal care highlights the urgent need for further clinical validation and interdisciplinary collaboration.

摘要

这篇叙述性综述探讨了人工智能(AI)在产前护理中的整合情况,特别是在管理患有胎儿生长受限(FGR)的妊娠方面。人工智能通过利用先进的机器学习算法和广泛的数据分析,为诊断和监测FGR提供了一种变革性方法。使用人工智能的自动胎儿生物测量在识别胎儿结构方面已显示出显著的精度,而分析多普勒指数和母体特征的预测模型提高了不良结局预测的可靠性。人工智能能够早期检测和分层FGR风险,促进有针对性的监测策略和个性化分娩计划,有可能改善新生儿结局。例如,研究表明,当人工智能工具与传统超声技术相结合时,在检测胎盘功能不全相关异常方面有改进。本综述还探讨了算法偏差、伦理考量和数据标准化等挑战,强调了全球可及性和监管框架对于确保公平实施的重要性。人工智能革新产前护理的潜力凸显了进一步进行临床验证和跨学科合作的迫切需求。

相似文献

4
Evaluation and Management of Suspected Fetal Growth Restriction.胎儿生长受限的评估与管理。
Obstet Gynecol Clin North Am. 2021 Jun;48(2):371-385. doi: 10.1016/j.ogc.2021.02.007.
7
Management of fetal growth restriction.胎儿生长受限的管理
Arch Dis Child Fetal Neonatal Ed. 2007 Jan;92(1):F62-7. doi: 10.1136/adc.2005.082297.

本文引用的文献

2
Ethical and Bias Considerations in Artificial Intelligence/Machine Learning.人工智能/机器学习中的伦理与偏见考量
Mod Pathol. 2025 Mar;38(3):100686. doi: 10.1016/j.modpat.2024.100686. Epub 2024 Dec 16.
3
Regulatory Aspects of Artificial Intelligence and Machine Learning.人工智能与机器学习的监管方面
Mod Pathol. 2024 Dec;37(12):100609. doi: 10.1016/j.modpat.2024.100609. Epub 2024 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验