Suppr超能文献

利用机器学习开发一种决策支持工具,以预测医院延迟出院情况。

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

作者信息

Pahlevani Mahsa, Rajabi Enayat, Taghavi Majid, VanBerkel Peter

机构信息

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Management Science Department, Cape Breton University, 1250 Grand Lake Road, Sydney, B1M 1A2, NS, Canada.

出版信息

BMC Health Serv Res. 2025 Jan 11;25(1):56. doi: 10.1186/s12913-024-12195-2.

Abstract

BACKGROUND

The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow. This study addresses three objectives: identifying likely ALC patients, key predictive features, and preparing guidelines for early ALC identification at admission.

METHODS

Data from Nova Scotia Health (2015-2022) covering patient demographics, diagnoses, and clinical information was extracted. Data preparation involved managing outliers, feature engineering, handling missing values, transforming categorical variables, and standardizing. Data imbalance was addressed using class weights, random oversampling, and the Synthetic Minority Over-Sampling Technique (SMOTE). Three ML classifiers, Random Forest (RF), Artificial Neural Network (ANN), and eXtreme Gradient Boosting (XGB), were tested to classify patients as ALC or not. Also, to ensure accurate ALC prediction at admission, only features available at that time were used in a separate model iteration.

RESULTS

Model performance was assessed using recall, F1-Score, and AUC metrics. The XGB model with SMOTE achieved the highest performance, with a recall of 0.95 and an AUC of 0.97, excelling in identifying ALC patients. The next best models were XGB with random oversampling and ANN with class weights. When limited to admission-only features, the XGB with SMOTE still performed well, achieving a recall of 0.91 and an AUC of 0.94, demonstrating its effectiveness in early ALC prediction. Additionally, the analysis identified diagnosis 1, patient age, and entry code as the top three predictors of ALC status.

CONCLUSIONS

The results demonstrate the potential of ML models to predict ALC status at admission. The findings support real-time decision-making to improve patient flow and reduce hospital overcrowding. The ALC guideline groups patients first by diagnosis, then by age, and finally by entry code, categorizing prediction outcomes into three probability ranges: below 30%, 30-70%, and above 70%. This framework assesses whether ALC status can be accurately predicted at admission or during the patient's stay before discharge.

摘要

背景

对医疗服务的需求不断增长,给卫生系统中的患者流程管理带来了挑战。不再需要急性护理但面临出院障碍的替代护理级别(ALC)患者导致住院时间延长和医院人满为患。在入院时预测这些患者有助于更好地进行资源规划、减少瓶颈并改善流程。本研究旨在实现三个目标:识别可能的ALC患者、关键预测特征以及制定入院时早期识别ALC的指南。

方法

提取了新斯科舍省卫生部门(2015 - 2022年)涵盖患者人口统计学、诊断和临床信息的数据。数据准备包括处理异常值、特征工程、处理缺失值、转换分类变量和标准化。使用类别权重、随机过采样和合成少数过采样技术(SMOTE)解决数据不平衡问题。测试了三种机器学习分类器,即随机森林(RF)、人工神经网络(ANN)和极端梯度提升(XGB),以将患者分类为是否为ALC。此外,为确保入院时准确预测ALC,在单独的模型迭代中仅使用当时可用的特征。

结果

使用召回率、F1分数和AUC指标评估模型性能。采用SMOTE的XGB模型表现最佳,召回率为0.95,AUC为0.97,在识别ALC患者方面表现出色。次优模型是采用随机过采样的XGB和采用类别权重的ANN。当仅限于入院时的特征时,采用SMOTE的XGB仍然表现良好,召回率为0.91,AUC为0.94,证明了其在早期ALC预测中的有效性。此外,分析确定诊断1、患者年龄和入院代码是ALC状态的前三大预测因素。

结论

结果表明机器学习模型在入院时预测ALC状态的潜力。这些发现支持实时决策,以改善患者流程并减少医院人满为患的情况。ALC指南首先按诊断对患者进行分组,然后按年龄,最后按入院代码,将预测结果分为三个概率范围:低于30%、30 - 70%和高于70%。该框架评估在入院时或患者出院前的住院期间是否可以准确预测ALC状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/537f/11724564/2f6d22af6909/12913_2024_12195_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验