Suppr超能文献

一种用于废弃堆叠式智能手机回收的姿态估计方法:基于实例分割和点云配准

A pose estimation approach for discarded stacked smartphones recycling: Based on instance segmentation and point cloud registration.

作者信息

Li Jie, Hu XueJun, Zheng Hangbin, Zhang Gaohua

机构信息

DongHua University, Department of Mechanical Engineering, ShangHai, 201600, China.

DongHua University, Department of Mechanical Engineering, ShangHai, 201600, China.

出版信息

Waste Manag. 2025 Feb 15;194:149-157. doi: 10.1016/j.wasman.2024.12.045. Epub 2025 Jan 11.

Abstract

With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered. Accurate pose information can provide critical data for precise robotic grasping, thereby improving the level of automation and efficiency in recycling and disassembly. This research proposes a pose estimation method tailored for stacked discarded smartphones, integrating an improved Mask R-CNN instance segmentation model with Iterative Closest Point (ICP) point cloud registration technology. The method begins by accurately segmenting stacked smartphones using both real and synthetic datasets. Subsequently, pose information is extracted through the proposed estimation approach, providing critical data to guide the robotic arm's grasping actions, thereby improving sorting efficiency and minimizing manual intervention. To enhance its practical applicability, a pose recognition interactive system is developed, enabling visualization and dynamic interaction with pose data. Experimental results demonstrate the effectiveness of the transfer learning algorithm, which leverages a large volume of synthetic data combined with a small batch of real-world data. This research offers valuable theoretical insights and technical solutions for advancing the automation and intelligent disassembly of end-of-life smartphones.

摘要

随着报废智能手机数量的迅速增加,提高其回收过程的自动化和智能化已成为一项紧迫的挑战。目前,废弃智能手机的拆解主要依靠人工,这不仅效率低下,还会带来环境污染和高强度劳动。在报废智能手机回收的背景下,经常会遇到诸如堆叠和遮挡等复杂情况。准确的位姿信息可以为精确的机器人抓取提供关键数据,从而提高回收和拆解的自动化水平和效率。本研究提出了一种针对堆叠废弃智能手机的位姿估计方法,将改进的Mask R-CNN实例分割模型与迭代最近点(ICP)点云配准技术相结合。该方法首先使用真实和合成数据集准确分割堆叠的智能手机。随后,通过所提出的估计方法提取位姿信息,为机械臂的抓取动作提供关键数据,从而提高分拣效率并最大限度地减少人工干预。为了增强其实际适用性,开发了一个位姿识别交互系统,实现对位姿数据的可视化和动态交互。实验结果证明了迁移学习算法的有效性,该算法利用大量合成数据并结合少量真实世界数据。本研究为推进报废智能手机的自动化和智能拆解提供了有价值的理论见解和技术解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验