Suppr超能文献

2004年至2024年糖酵解与前列腺癌研究的文献计量分析

Bibliometric analysis of glycolysis and prostate cancer research from 2004 to 2024.

作者信息

Zhu Congxu, Yang Jingjing, Liu Lumei, Li Bonan, Sun Tiansong, Sheng Wen, He Qinghu

机构信息

School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China.

Hunan Normal University Affiliated Changsha Hospital, No. 200 North Jinxing Road, Changsha, 410023, China.

出版信息

Discov Oncol. 2025 Jan 12;16(1):34. doi: 10.1007/s12672-025-01790-2.

Abstract

BACKGROUND

Prostate cancer (PCa) ranks as the second most common disease among men and the fourth most prevalent cancer worldwide. Enhanced glycolysis and excessive lactate secretion are recognized as critical factors driving the progression of various cancers. This study systematically investigated the research trends associated with glycolysis in PCa through bibliometric analysis.

METHOD

In this study, we conducted a systematic search of the Web of Science and PubMed databases for literature pertaining to the glycolysis of PCa that was published between January 1, 2004, and June 30, 2024. To achieve this objective, we employed CiteSpace software to generate visualizations that illustrate countries/regions, institutions, journals, and keywords. Additionally, we extracted pertinent quantitative data. Furthermore, we utilized VOSviewer software to create a collaboration network map among various journals.

RESULTS

Between 2004 and 2024, a total of 408 research articles on glycolysis in PCa were published, indicating a consistent upward trend in the annual publication rate. In this field, the United States not only leads in the volume of research papers but also has the highest degree of centrality. The journal "Cancer Research" is recognized as the most influential in the field, whereas "Prostate and Cancer" serves as a significant platform for disseminating research related to glycolysis in PCa. Keyword analysis has identified four primary research directions that have dominated this field over the past two decades. The role of glycolysis and its associated enzymes in PCa underpins this research. Glycolysis has also demonstrated significant clinical value in the diagnosis and prognosis of PCa. Moreover, drugs targeting glycolytic inhibitors and natural products have exhibited therapeutic potential against this disease. By modulating glycolytic mechanisms, there is potential to increase resistance in PCa. Currently, leading research in this area encompasses the application of nanotechnology to PCa glycolysis, the roles of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in this metabolic pathway, and the interactions between glycolysis and other biological processes in PCa.

CONCLUSION

This study employs bibliometric analysis to provide a comprehensive overview of research on glycolysis in PCa over the past two decades. It highlights the current state of knowledge in this field, identifies key research hotspots, and explores emerging frontiers, particularly nanotechnology, lncRNA, and miRNA, which are driving innovative research directions.

摘要

背景

前列腺癌(PCa)是男性中第二常见的疾病,也是全球第四大流行癌症。糖酵解增强和乳酸分泌过多被认为是驱动各种癌症进展的关键因素。本研究通过文献计量分析系统地调查了与PCa中糖酵解相关的研究趋势。

方法

在本研究中,我们对科学网和PubMed数据库进行了系统检索,以查找2004年1月1日至2024年6月30日期间发表的与PCa糖酵解相关的文献。为实现这一目标,我们使用CiteSpace软件生成展示国家/地区、机构、期刊和关键词的可视化图表。此外,我们提取了相关的定量数据。此外,我们利用VOSviewer软件创建了各种期刊之间的合作网络图。

结果

2004年至2024年期间,共发表了408篇关于PCa糖酵解的研究文章,表明年发表率呈持续上升趋势。在该领域,美国不仅在研究论文数量上领先,而且中心度最高。《癌症研究》杂志被认为是该领域最具影响力的期刊,而《前列腺与癌症》则是传播PCa中与糖酵解相关研究的重要平台。关键词分析确定了过去二十年中主导该领域的四个主要研究方向。糖酵解及其相关酶在PCa中的作用是该研究的基础。糖酵解在PCa的诊断和预后中也显示出显著的临床价值。此外,靶向糖酵解抑制剂的药物和天然产物对这种疾病表现出治疗潜力。通过调节糖酵解机制,有可能增加PCa的耐药性。目前,该领域的前沿研究包括纳米技术在PCa糖酵解中的应用、长链非编码RNA(lncRNA)和微小RNA(miRNA)在这一代谢途径中的作用,以及PCa中糖酵解与其他生物学过程之间的相互作用。

结论

本研究采用文献计量分析方法,全面概述了过去二十年中PCa糖酵解的研究情况。它突出了该领域的当前知识状态,确定了关键研究热点,并探索了新兴前沿领域,特别是推动创新研究方向的纳米技术、lncRNA和miRNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a591/11725561/4f01ff6543bd/12672_2025_1790_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验