Suppr超能文献

新型炎症生物标志物对预测儿童支原体肺炎感染的临床价值

The Clinical Value of Novel Inflammatory Biomarkers for Predicting Mycoplasma pneumoniae Infection in Children.

作者信息

Shao Liqun, Yu Bohai, Lyu Ying, Fan Shizhen, Gu Caizhen, Wang Hetong

机构信息

Department of Medical Laboratory, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China.

出版信息

J Clin Lab Anal. 2025 Feb;39(3):e25150. doi: 10.1002/jcla.25150. Epub 2025 Jan 12.

Abstract

BACKGROUND

Mycoplasma pneumoniae (MP) is a major cause of community-acquired pneumonia (CAP), posing diagnostic challenges. This study evaluates novel inflammatory biomarkers, including neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII) and system inflammation response index (SIRI) for MP diagnosis in children.

METHODS

Complete blood count (CBC) results of 424 children with MP infection and 150 health children were collected. NLR, MLR, PLR, SII and SIRI, were respectively calculated. Shapiro-Wilk test, Student's t-test, Mann-Whitney U-test and Pearson chi-squared test were used to analyze the clinical data of the patients and participants. Multiple logistic regression analysis was conducted based on the results of single factor analysis. Receiver operating characteristic (ROC) curve was drawn to evaluate the potential of the above biomarkers for MP infection.

RESULTS

Compared with the control group, white blood cell (WBC) count, neutrophil (NEU) count, monocyte (MON) count, NLR, MLR, PLR, SII and SIRI were significantly higher and lymphocyte count (LYM) and platelet (PLT) were significantly lower than those in MP group. The results of multivariate logistic regression analysis indicate that MLR and SIRI can serve as major risk factors for MP infection in children. The predictive accuracy of logistic regression model based on MLR and SIRI is 83.28%. The area under the curve (AUC) results showed that SIRI has better predicting value of MP infection (AUC = 0.892, Sensitivity = 75.7%, Specificity = 92.0%).

CONCLUSION

This study described the significance of novel inflammatory biomarkers in children with MP infection and may provide new auxiliary diagnostic indicators for MP infection.

摘要

背景

肺炎支原体(MP)是社区获得性肺炎(CAP)的主要病因,给诊断带来挑战。本研究评估了包括中性粒细胞与淋巴细胞比值(NLR)、单核细胞与淋巴细胞比值(MLR)、血小板与淋巴细胞比值(PLR)、全身免疫炎症指数(SII)和系统炎症反应指数(SIRI)在内的新型炎症生物标志物在儿童MP诊断中的作用。

方法

收集424例MP感染儿童和150例健康儿童的全血细胞计数(CBC)结果。分别计算NLR、MLR、PLR、SII和SIRI。采用Shapiro-Wilk检验、Student's t检验、Mann-Whitney U检验和Pearson卡方检验分析患者和参与者的临床资料。基于单因素分析结果进行多因素logistic回归分析。绘制受试者工作特征(ROC)曲线,评估上述生物标志物对MP感染的诊断潜力。

结果

与对照组相比,MP组白细胞(WBC)计数、中性粒细胞(NEU)计数、单核细胞(MON)计数、NLR、MLR、PLR、SII和SIRI显著升高,淋巴细胞计数(LYM)和血小板(PLT)显著降低。多因素logistic回归分析结果表明,MLR和SIRI可作为儿童MP感染的主要危险因素。基于MLR和SIRI的logistic回归模型预测准确率为83.28%。曲线下面积(AUC)结果显示,SIRI对MP感染具有较好的预测价值(AUC = 0.892,灵敏度 = 75.7%,特异度 = 92.0%)。

结论

本研究阐述了新型炎症生物标志物在儿童MP感染中的意义,可能为MP感染提供新的辅助诊断指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea3f/11821716/52a6250a7386/JCLA-39-e25150-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验