Suppr超能文献

跨时间设计的因果推断。

Causal inference with cross-temporal design.

作者信息

Cao Yi, Gozalo Pedro L, Gutman Roee

机构信息

Department of Clinical Development and Analytics, Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, United States.

Department of Health Services, Policy and Practice, Brown University, Providence, RI 02903, United States.

出版信息

Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujae163.

Abstract

When many participants in a randomized trial do not comply with their assigned intervention, the randomized encouragement design is a possible solution. In this design, the causal effects of the intervention can be estimated among participants who would have experienced the intervention if encouraged. For many policy interventions, encouragements cannot be randomized and investigators need to rely on observational data. To address this, we propose a cross-temporal design, which uses time to mimic a randomized encouragement experiment. However, time may be confounded with temporal trends that influence the outcomes. To disentangle these trends from the intervention effects, we replace the commonly used exclusion restrictions with temporal assumptions. We develop Bayesian procedures to estimate the causal effects and compare it to instrumental variables and matching approaches in simulations. The Bayesian approach outperforms the other 2 approaches in terms of estimation accuracy, and it is relatively robust to various violations of the common trends assumption. Taking advantage of the expansion of the Medicare Advantage (MA) program between 2011 and 2017, we implement the proposed method to estimate the effects of MA enrollment on the risk of skilled nursing facility residents being re-hospitalized within 30 days after discharge from the hospital.

摘要

当一项随机试验中的许多参与者不遵守分配给他们的干预措施时,随机鼓励设计是一种可能的解决方案。在这种设计中,可以在那些如果受到鼓励就会接受干预的参与者中估计干预措施的因果效应。对于许多政策干预措施而言,鼓励措施无法随机化,研究人员需要依赖观察数据。为了解决这个问题,我们提出了一种跨期设计,该设计利用时间来模拟随机鼓励实验。然而,时间可能会与影响结果的时间趋势混淆。为了将这些趋势与干预效果区分开来,我们用时间假设取代了常用的排除限制。我们开发了贝叶斯程序来估计因果效应,并在模拟中将其与工具变量法和匹配法进行比较。在估计准确性方面,贝叶斯方法优于其他两种方法,并且对于常见趋势假设的各种违反情况相对稳健。利用2011年至2017年医疗保险优势(MA)计划的扩张,我们实施所提出的方法来估计MA参保对熟练护理机构居民出院后30天内再次住院风险的影响。

相似文献

1
Causal inference with cross-temporal design.
Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujae163.
2
A Bayesian approach to estimating causal vaccine effects on binary post-infection outcomes.
Stat Med. 2016 Jan 15;35(1):53-64. doi: 10.1002/sim.6573. Epub 2015 Jul 20.
4
Identification of causal effects in the presence of nonignorable missing outcome values.
Biometrics. 2014 Jun;70(2):278-88. doi: 10.1111/biom.12136. Epub 2014 Jan 21.
5
Bayesian nonparametric generative models for causal inference with missing at random covariates.
Biometrics. 2018 Dec;74(4):1193-1202. doi: 10.1111/biom.12875. Epub 2018 Mar 26.
6
7
A causal inference framework for leveraging external controls in hybrid trials.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae095.
8
Identification and efficient estimation of the natural direct effect among the untreated.
Biometrics. 2013 Jun;69(2):310-7. doi: 10.1111/biom.12022. Epub 2013 Apr 23.
9
Matching algorithms for causal inference with multiple treatments.
Stat Med. 2019 Jul 30;38(17):3139-3167. doi: 10.1002/sim.8147. Epub 2019 May 7.
10
Bayesian statistical inference enhances the interpretation of contemporary randomized controlled trials.
J Clin Epidemiol. 2009 Jan;62(1):13-21.e5. doi: 10.1016/j.jclinepi.2008.07.006. Epub 2008 Oct 23.

本文引用的文献

1
Instrumented difference-in-differences.
Biometrics. 2023 Jun;79(2):569-581. doi: 10.1111/biom.13783. Epub 2022 Nov 9.
2
Estimation of causal effects of binary treatments in unconfounded studies.
Stat Med. 2015 Nov 20;34(26):3381-98. doi: 10.1002/sim.6532. Epub 2015 May 26.
3
Changes in Medicare costs with the growth of hospice care in nursing homes.
N Engl J Med. 2015 May 7;372(19):1823-31. doi: 10.1056/NEJMsa1408705.
4
Commentary: how to report instrumental variable analyses (suggestions welcome).
Epidemiology. 2013 May;24(3):370-4. doi: 10.1097/EDE.0b013e31828d0590.
5
Use of instrumental variable in prescription drug research with observational data: a systematic review.
J Clin Epidemiol. 2011 Jun;64(6):687-700. doi: 10.1016/j.jclinepi.2010.09.006. Epub 2010 Dec 16.
7
Assessing the effect of an influenza vaccine in an encouragement design.
Biostatistics. 2000 Mar;1(1):69-88. doi: 10.1093/biostatistics/1.1.69.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验