Suppr超能文献

未治疗者中自然直接效应的识别与有效估计。

Identification and efficient estimation of the natural direct effect among the untreated.

作者信息

Lendle Samuel D, Subbaraman Meenakshi S, van der Laan Mark J

机构信息

Division of Biostatistics, University of California, Berkeley, CA, USA.

出版信息

Biometrics. 2013 Jun;69(2):310-7. doi: 10.1111/biom.12022. Epub 2013 Apr 23.

Abstract

The natural direct effect (NDE), or the effect of an exposure on an outcome if an intermediate variable was set to the level it would have been in the absence of the exposure, is often of interest to investigators. In general, the statistical parameter associated with the NDE is difficult to estimate in the non-parametric model, particularly when the intermediate variable is continuous or high dimensional. In this article, we introduce a new causal parameter called the natural direct effect among the untreated, discuss identifiability assumptions, propose a sensitivity analysis for some of the assumptions, and show that this new parameter is equivalent to the NDE in a randomized controlled trial. We also present a targeted minimum loss estimator (TMLE), a locally efficient, double robust substitution estimator for the statistical parameter associated with this causal parameter. The TMLE can be applied to problems with continuous and high dimensional intermediate variables, and can be used to estimate the NDE in a randomized controlled trial with such data. Additionally, we define and discuss the estimation of three related causal parameters: the natural direct effect among the treated, the indirect effect among the untreated and the indirect effect among the treated.

摘要

自然直接效应(NDE),即如果将中间变量设定为在未暴露情况下本应处于的水平时,暴露对结局的效应,通常是研究者感兴趣的。一般来说,在非参数模型中,与NDE相关的统计参数很难估计,尤其是当中间变量是连续的或高维的时候。在本文中,我们引入了一个新的因果参数,称为未治疗者中的自然直接效应,讨论了可识别性假设,针对其中一些假设提出了敏感性分析,并表明在随机对照试验中这个新参数等同于NDE。我们还提出了一个目标最小损失估计量(TMLE),这是一个针对与该因果参数相关的统计参数的局部有效、双重稳健的替代估计量。TMLE可应用于具有连续和高维中间变量的问题,并且可用于估计具有此类数据的随机对照试验中的NDE。此外,我们定义并讨论了三个相关因果参数的估计:治疗者中的自然直接效应、未治疗者中的间接效应以及治疗者中的间接效应。

相似文献

1
Identification and efficient estimation of the natural direct effect among the untreated.
Biometrics. 2013 Jun;69(2):310-7. doi: 10.1111/biom.12022. Epub 2013 Apr 23.
2
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
4
A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
Int J Biostat. 2017 Oct 12;13(2):/j/ijb.2017.13.issue-2/ijb-2015-0097/ijb-2015-0097.xml. doi: 10.1515/ijb-2015-0097.
5
6
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.
7
A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome.
Int J Biostat. 2010;6(1):Article 26. doi: 10.2202/1557-4679.1260. Epub 2010 Aug 1.
8
Targeted maximum likelihood estimation of natural direct effects.
Int J Biostat. 2012 Jan 6;8(1):/j/ijb.2012.8.issue-1/1557-4679.1361/1557-4679.1361.xml. doi: 10.2202/1557-4679.1361.
9
Targeted minimum loss based estimator that outperforms a given estimator.
Int J Biostat. 2012 May 18;8(1):Article 11. doi: 10.1515/1557-4679.1332.
10
Doubly robust inference for targeted minimum loss-based estimation in randomized trials with missing outcome data.
Stat Med. 2017 Oct 30;36(24):3807-3819. doi: 10.1002/sim.7389. Epub 2017 Jul 25.

引用本文的文献

1
Robust inference on population indirect causal effects: the generalized front door criterion.
J R Stat Soc Series B Stat Methodol. 2020 Feb;82(1):199-214. doi: 10.1111/rssb.12345. Epub 2019 Nov 8.
2
The obesity paradox in critically ill patients: a causal learning approach to a casual finding.
Crit Care. 2020 Aug 5;24(1):485. doi: 10.1186/s13054-020-03199-5.
3
Challenges Raised by Mediation Analysis in a High-Dimension Setting.
Environ Health Perspect. 2020 May;128(5):55001. doi: 10.1289/EHP6240. Epub 2020 May 6.
4
An educational intervention to improve knowledge about prevention against occupational asthma and allergies using targeted maximum likelihood estimation.
Int Arch Occup Environ Health. 2019 Jul;92(5):629-638. doi: 10.1007/s00420-018-1397-1. Epub 2019 Jan 14.
5
Longitudinal Mediation Analysis with Time-varying Mediators and Exposures, with Application to Survival Outcomes.
J Causal Inference. 2017 Sep;5(2). doi: 10.1515/jci-2016-0006. Epub 2017 Jun 23.
7
Sharp sensitivity bounds for mediation under unmeasured mediator-outcome confounding.
Biometrika. 2016 Jun;103(2):483-490. doi: 10.1093/biomet/asw012. Epub 2016 Apr 30.

本文引用的文献

2
Targeted maximum likelihood estimation of natural direct effects.
Int J Biostat. 2012 Jan 6;8(1):/j/ijb.2012.8.issue-1/1557-4679.1361/1557-4679.1361.xml. doi: 10.2202/1557-4679.1361.
3
Direct effect models.
Int J Biostat. 2008;4(1):Article 23. doi: 10.2202/1557-4679.1064.
4
The Use of Propensity Scores in Mediation Analysis.
Multivariate Behav Res. 2011 May;46(3):425-452. doi: 10.1080/00273171.2011.576624.
5
Generalized causal mediation analysis.
Biometrics. 2011 Sep;67(3):1028-38. doi: 10.1111/j.1541-0420.2010.01547.x. Epub 2011 Feb 9.
6
Odds ratios for mediation analysis for a dichotomous outcome.
Am J Epidemiol. 2010 Dec 15;172(12):1339-48. doi: 10.1093/aje/kwq332. Epub 2010 Oct 29.
7
A general approach to causal mediation analysis.
Psychol Methods. 2010 Dec;15(4):309-34. doi: 10.1037/a0020761.
9
Alternative assumptions for the identification of direct and indirect effects.
Epidemiology. 2011 Nov;22(6):753-64. doi: 10.1097/EDE.0b013e3181c311b2.
10
Yes, but what's the mechanism? (don't expect an easy answer).
J Pers Soc Psychol. 2010 Apr;98(4):550-8. doi: 10.1037/a0018933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验