Suppr超能文献

1型糖尿病的心血管风险预测评分:一项系统评价和荟萃分析

Cardiovascular Risk Prediction Scores in Type 1 Diabetes: A Systematic Review and Meta-Analysis.

作者信息

Erqou Sebhat, Shahab Ahmed, Fayad Fayez H, Haji Mohammed, Yuyun Matthew F, Joseph Jacob, Wu Wen-Chih, Adler Amanda I, Orchard Trevor J, Echouffo-Tcheugui Justin B

机构信息

Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.

Division of Cardiology, Department of Medicine, Providence VA Medical Center and Alpert Medical School of Brown University, Providence, Rhode Island, USA.

出版信息

JACC Adv. 2024 Dec 17;4(1):101462. doi: 10.1016/j.jacadv.2024.101462. eCollection 2025 Jan.

Abstract

BACKGROUND

The extent of the performance and utility of scores for the risk of cardiovascular disease (CVD) in persons with type 1 diabetes (T1DM) largely remains unclear.

OBJECTIVE

The purpose of this study was to synthesize data on the performance of CVD risk scores in people living with T1DM.

METHODS

This study is a systematic review and meta-analysis. PubMed and EMBASE were searched through December 31, 2023. The included studies: 1) were retrospective, prospective, or cross-sectional in design; 2) included persons with T1DM; 3) assessed CVD outcomes; and 4) had data on at least on CVD risk score. Measures of calibration and discrimination qualitatively summarized. Measures of discrimination were combined using random-effects models stratified by type of risk model.

RESULTS

In a meta-analysis of observational studies of CVD risk scores in T1DM individuals, including 11 studies and 73,664 participants (mean age of 34 years, mainly White individuals and male [55%]), we evaluated 12 CVD risk prediction models (7 T1DM-specific, 1 type 2 diabetes-specific, and 4 general population models). Most risk scores had a moderate to excellent discrimination (C-statistic: 0.73-0.85) and predicted CVD risk well when compared to actual clinical events. CVD risk scores specifically developed in T1DM individuals exhibited a higher discriminative performance-pooled C-statistic of 0.81 vs 0.75 for risk scores developed in the general population or those with type 2 diabetes and also showed a better calibration.

CONCLUSIONS

Among individuals with T1DM, CVD risk models had a moderate to excellent discrimination, with a better discrimination and accuracy for T1DM-specific scores.

摘要

背景

1型糖尿病(T1DM)患者心血管疾病(CVD)风险评分的性能和效用程度在很大程度上仍不清楚。

目的

本研究的目的是综合1型糖尿病患者心血管疾病风险评分性能的数据。

方法

本研究为系统评价和荟萃分析。检索了截至2023年12月31日的PubMed和EMBASE。纳入的研究:1)设计为回顾性、前瞻性或横断面研究;2)纳入1型糖尿病患者;3)评估心血管疾病结局;4)至少有一项心血管疾病风险评分的数据。对校准和区分度的测量进行定性总结。使用按风险模型类型分层的随机效应模型合并区分度的测量值。

结果

在一项对1型糖尿病个体心血管疾病风险评分的观察性研究的荟萃分析中,包括11项研究和73664名参与者(平均年龄34岁,主要为白人个体且男性占55%),我们评估了12种心血管疾病风险预测模型(7种1型糖尿病特异性模型、1种2型糖尿病特异性模型和4种一般人群模型)。与实际临床事件相比,大多数风险评分具有中等至优秀的区分度(C统计量:0.73 - 0.85),并且能很好地预测心血管疾病风险。专门为1型糖尿病个体开发的心血管疾病风险评分表现出更高的区分性能——汇总的C统计量为0.81,而一般人群或2型糖尿病患者开发的风险评分为0.75,并且校准效果更好。

结论

在1型糖尿病个体中,心血管疾病风险模型具有中等至优秀的区分度,1型糖尿病特异性评分具有更好的区分度和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a211/11719351/9f781013e8ba/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验