Suppr超能文献

利用机器学习对影响菲律宾老年人身体质量指数的环境因素进行空间评估。

Environmental factors affecting the BMI of older adults in the Philippines spatially assessed using machine learning.

作者信息

Mendoza D K, Araza A B, Groot L D, Mensink M, Tan R C

机构信息

Department of Science and Technology - Food and Nutrition Research Institute, Taguig, Metro Manila, Philippines.

Earth Systems and Global Change, Wageningen University and Research, Wageningen, the Netherlands.

出版信息

Heliyon. 2024 Dec 6;11(1):e40904. doi: 10.1016/j.heliyon.2024.e40904. eCollection 2025 Jan 15.

Abstract

This study aimed to assess the environmental variables affecting the Body Mass Index of older adults at neighborhood levels (1 ha) while mapping probability distributions of normal, overweight-obese, and underweight older adults. We applied a data-driven method that integrates open-access remote sensing products and geospatial data, along with the first nutritional survey in the Philippines with geo-locations conducted in 2021. We used ensemble machine learning of different presence-only and presence-absence models, all subjected to hyperparameter tuning and variable decorrelation. The cross-validated ensemble model was found to have AUC=0.76-0.93 and TSS =0.45-0.81, which indicates that the models are performing better than random chance. We found that neighborhoods with (a) short distances to the main city, (b) short distances to roads, and (c) with densest road network all drive overweight-obese cases. The latter (c) contrasts the findings in Western developed countries because of delimiting factors in a tropical developing country related to active public transport, crime, weather, the walkability of roads, and even the COVID-19 restrictions during the time of the surveys. The probability distribution maps revealed that the older adults in the Philippine case cities were mostly overweight-obese, especially within and nearby city centers. We finally showed priority neighborhoods for intervention and local policy implementation, providing valuable insights for local government units.

摘要

本研究旨在评估邻里层面(1公顷)影响老年人身体质量指数的环境变量,同时绘制正常、超重肥胖和体重过轻老年人的概率分布图。我们应用了一种数据驱动的方法,该方法整合了开放获取的遥感产品和地理空间数据,以及2021年在菲律宾进行的首次带有地理位置的营养调查。我们使用了不同的仅存在模型和存在-缺失模型的集成机器学习,所有模型都经过了超参数调整和变量去相关处理。发现交叉验证的集成模型的AUC=0.76-0.93,TSS =0.45-0.81,这表明模型的表现优于随机猜测。我们发现,(a)距离主城较近、(b)距离道路较近以及(c)道路网络最密集的邻里都会导致超重肥胖情况。后者(c)与西方发达国家的研究结果形成对比,这是由于热带发展中国家存在一些限制因素,如公共交通的活跃度、犯罪、天气、道路的可步行性,甚至是调查期间的新冠疫情限制。概率分布图显示,菲律宾案例城市中的老年人大多超重肥胖,尤其是在市中心及其附近。我们最终展示了干预和地方政策实施的优先邻里,为地方政府单位提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/903a/11719313/5dc4b71f141d/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验