Suppr超能文献

智能药物递送:对用于吡嗪酰胺的C富勒烯及其掺杂类似物的密度泛函理论研究

Smart drug delivery: a DFT study of C fullerene and doped analogs for pyrazinamide.

作者信息

Moumivand Azam, Naderi Fereshteh, Moradi Omid, Makiabadi Batoul

机构信息

Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University Tehran Iran

Department of Chemical Engineering, Sirjan University of Technology Sirjan Iran

出版信息

Nanoscale Adv. 2024 Dec 17;7(5):1287-1299. doi: 10.1039/d4na00560k. eCollection 2025 Feb 25.

Abstract

The potential applicability of the C nanocage and its boron nitride-doped analogs (CBN and CBN) as pyrazinamide (PA) carriers was investigated using density functional theory. Geometry optimization and energy calculations were performed using the B3LYP functional and 6-31G(d) basis set. Besides, dispersion-corrected interaction energies were calculated at CAM (Coulomb attenuated method)-B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) levels of theory. The adsorption energy ( ), enthalpy (Δ), and Gibbs free energy (Δ) values for C-PA, CBN-PA, and CBN-PA structures were calculated. The molecular descriptors such as electrophilicity (), chemical potential (), chemical hardness () and chemical softness () of compounds were investigated. Natural bond orbital (NBO) analysis confirms the charge transfer from the drug molecule to nanocarriers upon adsorption. Based on the quantum theory of atoms in molecules (QTAIM), the nature of interactions in the complexes was determined. These findings suggest that C and its doped analogs are promising candidates for smart drug delivery systems and PA sensing applications, offering significant potential for advancements in targeted tuberculosis treatment.

摘要

利用密度泛函理论研究了C纳米笼及其氮化硼掺杂类似物(CBN和CBN)作为吡嗪酰胺(PA)载体的潜在适用性。使用B3LYP泛函和6-31G(d)基组进行几何优化和能量计算。此外,在CAM(库仑衰减方法)-B3LYP/6-31G(d,p)和M06-2X/6-31G(d,p)理论水平下计算了色散校正相互作用能。计算了C-PA、CBN-PA和CBN-PA结构的吸附能( )、焓(Δ)和吉布斯自由能(Δ)值。研究了化合物的亲电性()、化学势()、化学硬度()和化学软度()等分子描述符。自然键轨道(NBO)分析证实了吸附时药物分子向纳米载体的电荷转移。基于分子中原子的量子理论(QTAIM),确定了配合物中相互作用的性质。这些发现表明,C及其掺杂类似物是智能药物递送系统和PA传感应用的有前途的候选者,为靶向结核病治疗的进展提供了巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/234b/11854071/268b7cbb7b9e/d4na00560k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验