Ayala-Orozco Ciceron, Li Bowen, Li Gang, Tour James M
Department of Chemistry, Rice University Houston Texas 77005 USA
Department of Materials Science and NanoEngineering, The NanoCarbon Center, The Smalley-Curl Institute, The Rice Advanced Materials Institute, Rice University Houston Texas 77005 USA.
Chem Sci. 2025 Jan 1;16(6):2718-2729. doi: 10.1039/d4sc04846f. eCollection 2025 Feb 5.
We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum. We applied our approach to the hybridization of the benzoindole and heptamethine fragments for understanding of the resonance frequencies in cyanines using UV-vis and Raman spectroscopy. The molecular plasmon resonances in cyanines are tunable by engineering molecular structure modifications and controlling the dielectric constant of the medium in which the cyanines are dissolved. We measured the plasmonicity index, an easy-to-use and powerful tool to predict and quantify if an organic molecule in solution is a molecular plasmon. This is done by analyzing the UV-vis spectrum as a function of the change of the dielectric constant of the solvent. Our model provides a tool for understanding how to manipulate chemical structures and their interaction with light at the molecular scale as plasmon-driven molecular jackhammers for applications at the interface with biological structures.
我们最近展示了花青染料中的分子等离子体,它可通过全分子相干振动驱动作用将光子能量转化为机械能。在此,我们提出一种模型,它是分子轨道理论以及金属纳米结构中等离子体杂化的分子等离子体类似物。该模型描述了分子等离子体可由基本分子片段的组合或杂化得到,从而产生在电磁光谱中具有杂化等离子体共振的分子。我们将我们的方法应用于苯并吲哚和七甲川片段的杂化,以利用紫外可见光谱和拉曼光谱来理解花青中的共振频率。花青中的分子等离子体共振可通过设计分子结构修饰以及控制花青所溶解介质的介电常数来调节。我们测量了等离子体性指数,这是一种易于使用且强大的工具,用于预测和量化溶液中的有机分子是否为分子等离子体。这是通过分析紫外可见光谱作为溶剂介电常数变化的函数来完成的。我们的模型提供了一种工具,用于理解如何在分子尺度上操纵化学结构及其与光的相互作用,作为等离子体驱动的分子风镐,用于与生物结构界面处的应用。