Suppr超能文献

放射科医生的基础统计学:第1部分 - 基础数据解读与推断统计学

Basic Statistics for Radiologists: Part 1-Basic Data Interpretation and Inferential Statistics.

作者信息

Kumar Adarsh Anil, Valakkada Jineesh, Ayyappan Anoop, Kannath Santhosh

机构信息

Department of Imaging Sciences and Interventional Radiology, Sree Chitra Institute of Medical Sciences, Trivandrum, Kerala, India.

出版信息

Indian J Radiol Imaging. 2025 Jan 9;35(Suppl 1):S58-S73. doi: 10.1055/s-0044-1796644. eCollection 2025 Jan.

Abstract

A systematic approach to statistical analysis is essential for accurate data interpretation and informed decision-making in the rapidly evolving field of radiology. This review provides a comprehensive overview of the fundamental statistical concepts for radiologists and clinicians. The first part of this series introduces foundational elements such as data types, distributions, descriptive and inferential statistics, hypothesis testing, and sampling methods. These are crucial for understanding the underlying structure of research data. The second part of this series delves deeper into advanced topics, including correlation and causality, regression analysis, survival curves, and the analysis of diagnostic tests using contingency tables and receiver operator characteristic (ROC) curves. These tools are vital for evaluating the efficacy of imaging techniques and drawing valid conclusions from clinical studies. As radiology continues to push the boundaries of technology and therapeutic interventions, mastering these statistical principles will empower radiologists to critically assess literature, conduct rigorous research, and contribute to evidence-based practices. Despite the pivotal role of statistics in radiology, formal training in these methodologies is still limited to a certain extent. This primer aims to bridge that gap, providing radiologists with the necessary tools to enhance diagnostic accuracy, optimize patient outcomes, and advance the field through robust research.

摘要

在快速发展的放射学领域,采用系统的方法进行统计分析对于准确解读数据和做出明智决策至关重要。本综述为放射科医生和临床医生提供了基本统计概念的全面概述。本系列的第一部分介绍了诸如数据类型、分布、描述性和推断性统计、假设检验以及抽样方法等基础元素。这些对于理解研究数据的底层结构至关重要。本系列的第二部分深入探讨了高级主题,包括相关性和因果关系、回归分析、生存曲线以及使用列联表和接受者操作特征(ROC)曲线对诊断测试进行分析。这些工具对于评估成像技术的疗效以及从临床研究中得出有效结论至关重要。随着放射学不断突破技术和治疗干预的界限,掌握这些统计原则将使放射科医生能够批判性地评估文献、进行严谨的研究,并为循证实践做出贡献。尽管统计学在放射学中起着关键作用,但在这些方法方面的正规培训在一定程度上仍然有限。本入门指南旨在弥合这一差距,为放射科医生提供必要的工具,以提高诊断准确性、优化患者治疗效果,并通过强有力的研究推动该领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8bd/11717466/6dd06ae3903f/10-1055-s-0044-1796644-i2493717-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验