Suppr超能文献

放射科医生的统计学基础入门

Statistics 101 for Radiologists.

作者信息

Anvari Arash, Halpern Elkan F, Samir Anthony E

机构信息

From the Department of Radiology, Ultrasound Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114.

出版信息

Radiographics. 2015 Oct;35(6):1789-801. doi: 10.1148/rg.2015150112.

Abstract

Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced.

摘要

诊断测试具有广泛的临床应用,包括筛查、诊断、评估治疗效果和确定预后。解读诊断测试结果需要理解用于评估测试效能的关键统计概念。本综述解释了描述性统计,并讨论了概率,包括互斥和独立事件以及条件概率。在推断性统计部分,提供了关于研究设计的统计视角,并解释了如何选择合适的统计测试。讨论了招募研究样本的关键概念,包括代表性和随机抽样。定义了变量类型,包括预测变量、结果变量和协变量,并阐述了这些变量之间的相互关系。在假设检验部分,我们解释了如何确定组间观察到的差异是否可能是由偶然因素导致的。我们解释了I型和II型错误、统计显著性和研究效能,随后解释了效应大小以及如何使用置信区间将观察到的效应大小推广到更大的总体。统计测试分为四类进行解释:t检验和方差分析、比例分析测试、非参数测试以及回归技术。我们讨论了敏感性、特异性、准确性、受试者工作特征分析和似然比。介绍了可靠性和一致性的度量方法,包括κ统计量、组内相关系数以及布兰德-奥特曼图和分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验