Bianchini Marco, Tarhouni Mohamed, Francioni Matteo, Fiorentini Marco, Rivosecchi Chiara, Msadek Jamila, Tlili Abderrazak, Chouikhi Farah, Allegrezza Marina, Tesei Giulio, Deligios Paola Antonia, Orsini Roberto, Ledda Luigi, Karatassiou Maria, Ragkos Athanasios, D'Ottavio Paride
Department of Agricultural, Food and Environmental Sciences Università Politecnica delle Marche Ancona Italy.
Pastoral Ecosystems, Spontaneous Plants and Associated Microorganisms Laboratory Arid Regions Institute-University of Gabes Medenine Tunisia.
Ecol Evol. 2025 Jan 11;15(1):e70753. doi: 10.1002/ece3.70753. eCollection 2025 Jan.
This study investigates climate change impacts on spontaneous vegetation, focusing on the Mediterranean basin, a hotspot for climatic changes. Two case study areas, Monti Sibillini (central Italy, temperate) and Sidi Makhlouf (Southern Tunisia, arid), were selected for their contrasting climates and vegetation. Using WorldClim's CMCC-ESM2 climate model, future vegetation distribution was predicted for 2050 and 2080 under SSP 245 (optimistic) and 585 (pessimistic) scenarios. Two spectral indices, NDVI (temperate area) and SAVI (arid area), served as vegetation proxies, classified into three classes using K-means (NDVI: high = mainly associated with woodlands, medium = shrublands, continuous grasslands and crops, low = discontinuous grasslands, bare soil, and rocks; SAVI: high = mainly associated with woods, olive trees, and crops, medium = shrublands and sparse olive trees, low = bare soil and saline areas). Classes validated with ESA WorldCover 2020 data and sampled via 1390 presence-only points. A set of 33 environmental variables (topography, soil, and bioclimatic) was screened using Pearson correlation matrices, and predictive models were built using four algorithms: MaxEnt, Random Forest, XG Boost, and Neural Network. Results revealed increasing temperatures and declining precipitation in both regions, confirming Mediterranean climate trends. Vegetation changes varied by area: in the temperate area, woodlands and shrublands were stable, but discontinuous grasslands expanded. In the arid area, woodlands gained suitable habitat, while bare soil declined under the pessimistic SSP 585 scenario. Both areas showed an upward shift for shrublands and grasslands. The models indicated significant shifts in areal distribution and environmental conditions, affecting habitat suitability and ecosystem dynamics. MaxEnt emerged as the most reliable algorithm for small presence-only datasets, effectively predicting habitat suitability. The findings highlight significant vegetation redistribution and altered ecosystem dynamics due to climate change, underscoring the importance of these models in planning for future ecological challenges.
本研究调查气候变化对自然植被的影响,重点关注地中海盆地,这是气候变化的一个热点地区。选择了两个案例研究区域,意大利中部温带的锡比利尼山和突尼斯南部干旱的西迪马赫卢夫,因其气候和植被形成对比。使用世界气候的CMCC-ESM2气候模型,在SSP 245(乐观)和585(悲观)情景下预测了2050年和2080年未来植被分布。两个光谱指数,NDVI(温带地区)和SAVI(干旱地区),用作植被替代指标,使用K均值法分为三类(NDVI:高 = 主要与林地相关,中 = 灌丛、连续草地和作物,低 = 不连续草地、裸土和岩石;SAVI:高 = 主要与树林、橄榄树和作物相关,中 = 灌丛和稀疏橄榄树,低 = 裸土和盐渍地区)。类别通过欧洲航天局2020年全球土地覆盖数据进行验证,并通过1390个仅存在点进行采样。使用皮尔逊相关矩阵筛选了一组33个环境变量(地形、土壤和生物气候),并使用四种算法构建预测模型:最大熵模型、随机森林、极端梯度提升和神经网络。结果显示两个地区气温上升、降水下降,证实了地中海气候趋势。植被变化因地区而异:在温带地区,林地和灌丛稳定,但不连续草地面积扩大。在干旱地区,林地获得了适宜栖息地,而在悲观的SSP 585情景下裸土面积减少。两个地区的灌丛和草地都出现了向上转移。模型表明面积分布和环境条件发生了显著变化,影响了栖息地适宜性和生态系统动态。对于仅存在少量数据的小数据集,最大熵模型成为最可靠的算法,能有效预测栖息地适宜性。研究结果突出了气候变化导致的显著植被重新分布和生态系统动态变化,并强调了这些模型在应对未来生态挑战规划中的重要性。