Suppr超能文献

利用遥感和机器学习对肯尼亚山森林生态系统的气候变化影响进行建模并预测未来脆弱性。

Modeling climate change impacts and predicting future vulnerability in the Mount Kenya forest ecosystem using remote sensing and machine learning.

作者信息

Otieno Terry Amolo, Otieno Loventa Anyango, Rotich Brian, Löhr Katharina, Kipkulei Harison Kiplagat

机构信息

Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box, Nairobi, 62000 00200, Kenya.

Faculty of Environmental Studies and Resources Development, Chuka University, P.O. Box 109-60400, Chuka, Kenya.

出版信息

Environ Monit Assess. 2025 May 6;197(6):631. doi: 10.1007/s10661-025-14089-0.

Abstract

The Mount Kenya forest ecosystem (MKFE), a crucial biodiversity hotspot and one of Kenya's key water towers, is increasingly threatened by climate change, putting its ecological integrity and vital ecosystem services at risk. Understanding the interactions between climate extremes and forest dynamics is essential for conservation planning, especially in the Mount Kenya Forest Ecosystem (MKFE), where rising temperatures and erratic rainfall are altering vegetation patterns, reducing forest resilience, and threatening both biodiversity and water security. This study integrates remote sensing and machine learning to assess historical vegetation changes and predict areas at risk in the future. Landsat imagery from 2000 to 2020 was used to derive vegetation indices comprising the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil-Adjusted Vegetation Index (SAVI), and Bare Soil Index (BSI). Climate variables, including extreme precipitation and temperature indices, were extracted from CHIRPS and ERA5 datasets. Machine learning models, including Random Forest (RF), XGBoost, and Support Vector Machines (SVM), were trained to assess climate-vegetation relationships and predict future vegetation dynamics under the SSP245 climate scenario using Coupled Model Intercomparison Project Phase 6 (CMIP6) downscaled projections. The RF model achieved high accuracy (R = 0.82, RMSE = 0.15) in predicting the dynamics of vegetation conditions. Model projections show a 49-55% decline in EVI across forest areas by 2040, with the most pronounced losses likely in lower montane zones, which are more sensitive to climate-induced vegetation stress. Results emphasize the critical role of precipitation in sustaining forest health and highlight the urgent need for adaptive management strategies, including afforestation, sustainable land-use planning, and policy-driven conservation efforts. This study provides a scalable framework for modelling climate impacts on forest ecosystems globally and offers actionable insights for policymakers.

摘要

肯尼亚山森林生态系统(MKFE)是一个至关重要的生物多样性热点地区,也是肯尼亚的主要水塔之一,正日益受到气候变化的威胁,其生态完整性和重要的生态系统服务面临风险。了解极端气候与森林动态之间的相互作用对于保护规划至关重要,特别是在肯尼亚山森林生态系统(MKFE)中,气温上升和降雨不稳定正在改变植被格局,降低森林恢复力,并威胁生物多样性和水资源安全。本研究整合了遥感和机器学习技术,以评估历史植被变化并预测未来的风险区域。利用2000年至2020年的陆地卫星图像得出植被指数,包括归一化差异植被指数(NDVI)、增强植被指数(EVI)、土壤调节植被指数(SAVI)和裸土指数(BSI)。从CHIRPS和ERA5数据集中提取气候变量,包括极端降水和温度指数。训练了包括随机森林(RF)、XGBoost和支持向量机(SVM)在内的机器学习模型,以评估气候与植被的关系,并使用耦合模式比较计划第六阶段(CMIP6)降尺度预测,在SSP245气候情景下预测未来植被动态。RF模型在预测植被状况动态方面具有较高的准确性(R = 0.82,RMSE = 0.15)。模型预测显示,到2040年,整个森林地区的EVI将下降49%-55%,最明显的损失可能发生在对气候引起的植被压力更为敏感的低山地带。结果强调了降水在维持森林健康方面的关键作用,并突出了采取适应性管理策略的迫切需要,包括植树造林、可持续土地利用规划和政策驱动的保护措施。本研究为全球范围内模拟气候对森林生态系统的影响提供了一个可扩展的框架,并为政策制定者提供了可操作的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c72c/12055643/43650538cb95/10661_2025_14089_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验