Suppr超能文献

重写线粒体疾病中的核表观遗传脚本作为异质性控制策略。

Rewriting nuclear epigenetic scripts in mitochondrial diseases as a strategy for heteroplasmy control.

作者信息

Pérez María J, Colombo Rocío B, Real Sebastián M, Branham María T, Laurito Sergio R, Moraes Carlos T, Mayorga Lía

出版信息

bioRxiv. 2025 Apr 15:2024.12.30.630791. doi: 10.1101/2024.12.30.630791.

Abstract

Mitochondrial diseases, caused by mutations in either nuclear or mitochondrial DNA (mtDNA), currently have limited treatment options. For mtDNA mutations, reducing mutant-to-wild-type mtDNA ratio (heteroplasmy shift) is a promising therapeutic option, though current approaches face significant challenges. Previous research has shown that severe mitochondrial dysfunction triggers an adaptive nuclear epigenetic response, characterized by changes in DNA methylation, which does not occur or is less important when mitochondrial impairment is subtle. Building on this, we hypothesized that targeting nuclear DNA methylation could selectively compromise cells with high levels of mutant mtDNA, favor ones with lower mutant load and thereby reduce overall heteroplasmy. Using cybrid models harboring two disease-causing mtDNA mutations-m.13513G>A and m.8344A>G-at varying heteroplasmy levels, we discovered that both the mutation type and load distinctly shape the nuclear DNA methylome. We found this methylation pattern to be critical for the survival of high-heteroplasmy cells but not for the low-heteroplasmy ones. Consequently, by disrupting this epigenetic programming with FDA approved DNA methylation inhibitors we managed to selectively impact high-heteroplasmy cybrids and reduce heteroplasmy. These findings were validated in both cultured cells and an xenograft model. Our study reveals a previously unrecognized role for nuclear DNA methylation in regulating cell survival in the context of mitochondrial heteroplasmy. This insight not only advances our understanding of mitochondrial-nuclear interactions but also introduces epigenetic modulation as a possible therapeutic avenue for mitochondrial diseases.

摘要

线粒体疾病由核DNA或线粒体DNA(mtDNA)突变引起,目前治疗选择有限。对于mtDNA突变,降低突变型与野生型mtDNA比例(异质性转移)是一种有前景的治疗选择,尽管目前的方法面临重大挑战。先前的研究表明,严重的线粒体功能障碍会引发适应性核表观遗传反应,其特征是DNA甲基化发生变化,而当线粒体损伤轻微时,这种变化不会发生或不太重要。基于此,我们假设靶向核DNA甲基化可以选择性地损害具有高水平突变mtDNA的细胞,有利于突变负荷较低的细胞,从而降低总体异质性。使用携带两种致病mtDNA突变——m.13513G>A和m.8344A>G——且异质性水平不同的细胞杂交模型,我们发现突变类型和负荷都明显塑造了核DNA甲基化组。我们发现这种甲基化模式对高异质性细胞的存活至关重要,但对低异质性细胞则不然。因此,通过用FDA批准的DNA甲基化抑制剂破坏这种表观遗传编程,我们成功地选择性影响了高异质性细胞杂交体并降低了异质性。这些发现在培养细胞和异种移植模型中均得到验证。我们的研究揭示了核DNA甲基化在调节线粒体异质性背景下细胞存活方面以前未被认识的作用。这一见解不仅推进了我们对线粒体-核相互作用的理解,还引入了表观遗传调节作为线粒体疾病的一种可能治疗途径。

相似文献

1
Rewriting nuclear epigenetic scripts in mitochondrial diseases as a strategy for heteroplasmy control.
bioRxiv. 2025 Apr 15:2024.12.30.630791. doi: 10.1101/2024.12.30.630791.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验