Pérez María J, Colombo Rocío B, Real Sebastián M, Branham María T, Laurito Sergio R, Moraes Carlos T, Mayorga Lía
Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
Facultad de Ciencias de la Nutrición. Universidad Juan Agustín Maza, Mendoza, Argentina.
EMBO Mol Med. 2025 Aug 11. doi: 10.1038/s44321-025-00285-5.
Mitochondrial diseases, caused by mutations in nuclear or mitochondrial DNA (mtDNA), have limited treatment options. For mtDNA mutations, reducing the mutant-to-wild-type mtDNA ratio (heteroplasmy shift) is a promising strategy, though it currently faces challenges. Previous research showed that severe mitochondrial dysfunction triggers an adaptive nuclear epigenetic response, through changes in DNA methylation, absent or less important for subtle mitochondrial impairment. Therefore, we hypothesized that targeting nuclear DNA methylation could impair cells with high-mutant mtDNA load while sparing those with lower levels, reducing overall heteroplasmy. Using cybrid models harboring two disease-causing mtDNA mutations-m.13513 G > A and m.8344 A > G-at varying heteroplasmies, we discovered that both the mutation type and load distinctly shape the nuclear DNA methylome. We found this methylation pattern critical for the survival of high-heteroplasmy cells but not for low-heteroplasmy ones. Treatment with FDA-approved DNA methylation inhibitors selectively impacted high-heteroplasmy cybrids and reduced heteroplasmy. These findings were validated in cultured cells and xenografts. Our findings highlight nuclear DNA methylation as a key regulator of heteroplasmic cell survival and a potential therapeutic target for mitochondrial diseases.
由核DNA或线粒体DNA(mtDNA)突变引起的线粒体疾病,治疗选择有限。对于mtDNA突变,降低突变型与野生型mtDNA的比例(异质性转移)是一种有前景的策略,尽管目前面临挑战。先前的研究表明,严重的线粒体功能障碍会引发适应性核表观遗传反应,通过DNA甲基化的变化,而对于轻微的线粒体损伤则不存在或不太重要。因此,我们假设靶向核DNA甲基化可能会损害高突变mtDNA负荷的细胞,同时使低水平的细胞免受影响,从而降低总体异质性。使用携带两种致病mtDNA突变——m.13513G>A和m.8344A>G——且异质性不同的细胞杂交模型,我们发现突变类型和负荷都明显塑造了核DNA甲基化组。我们发现这种甲基化模式对高异质性细胞的存活至关重要,但对低异质性细胞则不然。用FDA批准的DNA甲基化抑制剂进行治疗会选择性地影响高异质性细胞杂交体并降低异质性。这些发现在培养细胞和异种移植中得到了验证。我们的研究结果突出了核DNA甲基化作为异质性细胞存活的关键调节因子以及线粒体疾病的潜在治疗靶点。