Kimmey Blake A, Ejoh Lindsay, Shangloo Lily, Wojick Jessica A, Chehimi Samar Nasser, McCall Nora M, Oswell Corinna S, Mahmood Malaika, Yang Lite, Samineni Vijay K, Ramakrishnan Charu, Deisseroth Karl, Crist Richard C, Reiner Benjamin C, Tian Lin, Corder Gregory
Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, USA.
Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, USA.
bioRxiv. 2025 Jan 3:2025.01.03.631111. doi: 10.1101/2025.01.03.631111.
Pain is a dynamic and nonlinear experience shaped by injury and contextual factors, including expectations of future pain or relief. While μ opioid receptors are central to the analgesic effects of opioid drugs, the endogenous opioid neurocircuitry underlying pain and placebo analgesia remains poorly understood. The ventrolateral column of the posterior periaqueductal gray is a critical hub for nociception and endogenous analgesia mediated by opioid signaling. However, significant gaps remain in understanding the cell-type identities, the sub-second neural dynamics involved in pain modulation, the role of endogenous peptide neuromodulators, and the contextual factors influencing these processes. Using spatial mapping with single-nuclei RNA sequencing of pain-active neurons projecting to distinct long-range brain targets, alongside cell type-specific and activity-dependent genetic tools for optical recordings and modulation of neural activity and opioid peptide release, we identified a functional dichotomy in the ventrolateral periaqueductal gray. Neurons expressing μ opioid receptors encode active nociceptive states, whereas enkephalin-releasing neurons drive pain relief during recovery from injury, in response to learned fear predictions, and during placebo analgesia. Finally, by leveraging the functional effects of placebo analgesia, we used direct optogenetic activation of vlPAG enkephalin neurons to drive opioid peptide release, resulting in a robust reduction in pain. These findings show that diverse need states converge on a shared midbrain circuit that releases endogenous opioids with high spatiotemporal precision to suppress nociceptive activity and promote analgesia.
疼痛是一种由损伤和情境因素塑造的动态且非线性的体验,这些因素包括对未来疼痛或缓解的预期。虽然μ阿片受体是阿片类药物镇痛作用的核心,但疼痛和安慰剂镇痛背后的内源性阿片神经回路仍知之甚少。导水管周围灰质后外侧柱是由阿片信号介导的伤害感受和内源性镇痛的关键枢纽。然而,在理解细胞类型身份、参与疼痛调制的亚秒级神经动力学、内源性肽神经调节剂的作用以及影响这些过程的情境因素方面仍存在重大差距。通过对投射到不同远程脑靶点的疼痛激活神经元进行单核RNA测序的空间映射,以及用于光学记录、神经活动和阿片肽释放调制的细胞类型特异性和活动依赖性遗传工具,我们在导水管周围灰质腹外侧区发现了一种功能二分法。表达μ阿片受体的神经元编码活跃的伤害感受状态,而脑啡肽释放神经元在损伤恢复期间、响应习得的恐惧预测以及安慰剂镇痛期间驱动疼痛缓解。最后,通过利用安慰剂镇痛的功能效应,我们使用直接光遗传学激活腹外侧导水管周围灰质脑啡肽神经元来驱动阿片肽释放,从而显著减轻疼痛。这些发现表明,不同的需求状态汇聚在一个共享的中脑回路,该回路以高时空精度释放内源性阿片类物质,以抑制伤害感受活动并促进镇痛。