Kavanagh Madeline E, McLean Kirsty J, Gilbert Sophie H, Amadi Cecilia, Snee Matthew, Tunnicliffe Richard B, Arora Kriti, Boshoff Helena I, Fanourakis Alexander, Rebello-Lopez Maria Jose, Ortega-Muro Fatima, Levy Colin W, Munro Andrew W, Leys David, Abell Chris, Coyne Anthony G
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
bioRxiv. 2024 Dec 3:2024.10.28.620643. doi: 10.1101/2024.10.28.620643.
() is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi- (MDR) and extensively- (XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes. A structure-guided fragment-linking strategy was used to optimize the binding affinity of , yielding a potent dual CYP125/142 inhibitor (K CYP125/CYP142 = 0.04/0.16 μM). Compound potently inhibits the catalytic activity of CYP125 and CYP142 (K values < 0.1 μM), and rapidly depletes intracellular ATP (IC = 0.15 μM). The compound has antimicrobial activity against both drug susceptible and MDR MIC values 0.4 - 1.5 μM in extracellular assays, and inhibits the growth of in human macrophages (MIC = 1.7 μM) with good selectivity over mammalian cytotoxicity (LD ≥ 50 μM). The combination of small molecule inhibitors and structural data reported here provide useful tools to study the role of cholesterol metabolism in and are a promising step towards novel antibiotics targeting bioenergetic pathways, which could be used to help combat MDR-TB.
(某病原体)是世界上最致命的传染性病原体,迫切需要新型药物来对抗多重耐药(MDR)和广泛耐药(XDR)菌株的出现。该细菌在感染的巨噬细胞中特异性上调固醇摄取途径,宿主来源胆固醇的代谢对于其长期存活至关重要。在此,我们报告了抗结核小分子的开发,这些小分子可抑制胆固醇氧化酶CYP125和CYP142,它们催化胆固醇代谢的起始步骤。通过高效的生物物理片段筛选来表征CYP125和CYP142的构效关系,并鉴定出一种可与这两种酶的血红素辅因子结合的非唑类小分子。采用结构导向的片段连接策略优化(该小分子)的结合亲和力,得到一种有效的双重CYP125/142抑制剂(CYP125/CYP142的K值 = 0.04/0.16 μM)。化合物(该抑制剂)有效抑制CYP125和CYP142的催化活性(K值 < 0.1 μM),并迅速消耗细胞内ATP(IC = 0.15 μM)。该化合物在细胞外试验中对药物敏感和MDR菌株均具有抗菌活性(MIC值为0.4 - 1.5 μM),并在人巨噬细胞中抑制(该病原体)的生长(MIC = 1.7 μM),对哺乳动物细胞毒性具有良好的选择性(LD≥50 μM)。本文报道的小分子抑制剂与结构数据的结合为研究胆固醇代谢在(该病原体)中的作用提供了有用工具,并且是朝着靶向生物能量途径的新型抗生素迈出的有希望的一步,可用于帮助对抗耐多药结核病。