Nagy Kinga, Sándor Péter, Vékey Károly, Drahos László, Révész Ágnes
MS Proteomics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.
Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary.
J Am Soc Mass Spectrom. 2025 Feb 5;36(2):299-308. doi: 10.1021/jasms.4c00396. Epub 2025 Jan 13.
In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal. The success of peptide and protein identifications relies on the information content of MS/MS spectra, influenced by collision energy in collision-induced dissociation. We investigated this by conducting LC-MS/MS measurements with different enzymes, including trypsin, Arg-C, Glu-C, Asp-N, and chymotrypsin, at varying collision energies. We analyzed peptide scores for thousands of peptides and determined optimal collision energy (CE) values. Our results showed a linear / dependence for all enzymes, with Glu-C, Asp-N, and chymotrypsin requiring significantly lower energies than trypsin and Arg-C. We proposed a tailored CE selection method for these alternative enzymes, applying ca. 20% lower energy compared to tryptic peptides. This would result in a 10-15 eV decrease on a Bruker QTof instrument and a 5-6 NCE% (normalized collision energy) difference on an Orbitrap. The optimized method improved bottom-up proteomics performance by 8-32%, as measured by peptide identification and sequence coverage. The different trends in fragmentation behavior were linked to the effects of C-terminal basic amino acids for Arg-C and trypsin, stabilizing y fragment ions. This optimized method boosts the performance and provides insight into the impact of enzyme specificity. Data sets are available in the MassIVE repository (MSV000095066).
近年来,具有不同特异性的替代酶在基于质谱的自下而上蛋白质组学中变得越来越重要,它能提供有关生物样品的正交信息以及在某些应用中的优势。然而,大多数质谱工作流程都是针对胰蛋白酶消化进行优化的。这就引发了酶特异性是否会影响质谱以及当前非胰蛋白酶消化方法是否次优的问题。肽和蛋白质鉴定的成功依赖于串联质谱(MS/MS)谱的信息含量,而这又受碰撞诱导解离中的碰撞能量影响。我们通过使用包括胰蛋白酶、精氨酸内切酶(Arg-C)、谷氨酸内切酶(Glu-C)、天冬氨酸内切酶(Asp-N)和糜蛋白酶在内的不同酶,在不同碰撞能量下进行液相色谱 - 串联质谱(LC-MS/MS)测量来对此进行研究。我们分析了数千个肽的肽得分,并确定了最佳碰撞能量(CE)值。我们的结果表明,所有酶都存在线性关系,其中Glu-C、Asp-N和糜蛋白酶所需的能量明显低于胰蛋白酶和Arg-C。我们为这些替代酶提出了一种量身定制的CE选择方法,与胰蛋白酶消化的肽相比,应用的能量约低20%。这将导致在布鲁克Q-TOF仪器上能量降低10 - 15电子伏特,在轨道阱上归一化碰撞能量(NCE)相差5 - 6%。通过肽鉴定和序列覆盖率衡量,优化后的方法将自下而上蛋白质组学的性能提高了8 - 32%。裂解行为的不同趋势与Arg-C和胰蛋白酶的C端碱性氨基酸的作用有关,这些氨基酸能稳定y离子片段。这种优化方法提高了性能,并深入了解了酶特异性的影响。数据集可在MassIVE数据库(MSV000095066)中获取。