Zhou Kechen, Yang Huimin, Du Zhenming, Yang Yazhou, Zhu Chaoqi, Su Huiyu, Dong Wenbo, Zeng Dawen
State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China.
ACS Sens. 2025 Jan 24;10(1):517-525. doi: 10.1021/acssensors.4c02980. Epub 2025 Jan 13.
High selectivity and sensitivity sensing of HS gas play a decisive role in the early detection of sulfide solid-state battery failure. Herein, we construct the CsPbBr perovskite-based sensor that exhibits outstanding gas-sensing performance to HS at room temperature, including high selectivity, fast response/recovery speed (73.5/275.6 s), humidity insensitivity, and long-term stability (6 weeks without degradation). The excellent selectivity of CsPbBr for HS results from the formation of lead-sulfur (Pb-S) bonds exclusive to other molecules and upshifted the Fermi level at the perovskite interface by density functional theory (DFT) calculations. The in-situ experiments reveal the interaction of Pb-S bonding and the transformation of HS molecules on the perovskite surface. The simple synthesis method and unique sensing mechanism based on perovskite semiconductors help build the room-temperature metal halide perovskite (MHP)-based gas sensors with high selectivity and fast response/recovery speed for solid-state battery failure detection in the future.
对H₂S气体的高选择性和灵敏传感在硫化物固态电池故障的早期检测中起着决定性作用。在此,我们构建了基于CsPbBr钙钛矿的传感器,该传感器在室温下对H₂S表现出优异的气敏性能,包括高选择性、快速响应/恢复速度(73.5/275.6秒)、湿度不敏感性和长期稳定性(6周无降解)。CsPbBr对H₂S的优异选择性源于形成了其他分子所没有的铅-硫(Pb-S)键,并通过密度泛函理论(DFT)计算使钙钛矿界面处的费米能级上移。原位实验揭示了Pb-S键的相互作用以及H₂S分子在钙钛矿表面的转化。基于钙钛矿半导体的简单合成方法和独特传感机制有助于在未来构建用于固态电池故障检测的具有高选择性和快速响应/恢复速度的室温金属卤化物钙钛矿(MHP)基气体传感器。