The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Nat Protoc. 2019 May;14(5):1425-1454. doi: 10.1038/s41596-019-0144-8. Epub 2019 Apr 5.
The vascular endothelium forms the inner lining of blood vessels and actively regulates vascular permeability in response to chemical and physical stimuli. Understanding the molecular pathways and mechanisms that regulate the permeability of blood vessels is of critical importance for developing therapies for cardiovascular dysfunction and disease. Recently, we developed a novel microfluidic human engineered microvessel (hEMV) platform to enable controlled blood flow through a human endothelial lumen within a physiologic 3D extracellular matrix (ECM) into which pericytes and other stromal cells can be introduced to recapitulate tissue-specific microvascular physiology. This protocol describes how to design and fabricate the silicon hEMV device master molds (takes ~1 week) and elastomeric substrates (takes 3 d); how to seed, culture, and apply calibrated fluid shear stress to hEMVs (takes 1-7 d); and how to assess vascular barrier function (takes 1 d) and perform immunofluorescence imaging (takes 3 d).
血管内皮形成血管的内层,并根据化学和物理刺激积极调节血管通透性。了解调节血管通透性的分子途径和机制对于开发心血管功能障碍和疾病的治疗方法至关重要。最近,我们开发了一种新颖的微流控人工程微血管(hEMV)平台,可在生理 3D 细胞外基质(ECM)内控制血流通过人内皮管腔,其中可以引入周细胞和其他基质细胞以重现组织特异性微血管生理学。本协议描述了如何设计和制造硅 hEMV 器件主模具(需要 1 周左右)和弹性体基底(需要 3 天);如何接种、培养和施加校准的流体剪切力到 hEMVs(需要 1-7 天);以及如何评估血管屏障功能(需要 1 天)和进行免疫荧光成像(需要 3 天)。