Suppr超能文献

影响城市地区一氧化氮浓度时空变异性的因素:基于地理信息系统和遥感的方法。

Factors influencing spatiotemporal variability of NO concentration in urban area: a GIS and remote sensing-based approach.

作者信息

Jubaer Al, Hossain Rakib, Ahmed Afzal, Hossain Md Shakhaoat

机构信息

Department of Civil Engineering, United International University, United City, Madani Ave, 1212, Dhaka, Bangladesh.

Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.

出版信息

Environ Monit Assess. 2025 Jan 13;197(2):167. doi: 10.1007/s10661-024-13531-z.

Abstract

The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density. The results reveal significant seasonal variations. The highest annual mean NO concentration (3.1 × 10 mol/ m)was recorded for winter 2021, and the lowest (1.1 × 10 mol/m) was for monsoon 2022. The study demonstrates a significant positive correlation between NO concentrations and LST (0.47), road density (0.55), settlement density (0.44), and industrial density (0.35) and a negative correlation with NDVI (- 0.4). Regression analysis revealed that NO concentrations were positively associated with land surface temperature (LST; β = 0.02, R = 0.22), road density (β = 0.002, R = 0.30), settlement density (β = 0.002, R = 0.19), and industrial density (β = 0.007, R = 0.12), while a negative association was observed with NDVI (β = - 0.28, R = 0.16). This research offers critical insights for policymakers and urban planners, advocating for enhanced green infrastructure, stringent emission controls, and sustainable urban development strategies to mitigate air pollution in Gazipur. Our methodological approach and findings contribute to the broader discourse on urban air quality management in developing countries.

摘要

全球对城市空气质量的关注度日益提高,这凸显了了解二氧化氮(NO)的时空动态及其环境和人为因素的必要性,特别是在孟加拉国达卡(加济布尔)这样空气质量全球最差的城市。本研究利用谷歌地球引擎(GEE)平台上的哨兵 - 5P TROPOMI数据,分析了2019年至2022年加济布尔的NO浓度。对NO水平与各种环境因素进行了相关性和回归分析,这些因素包括地表温度(LST)、归一化植被指数(NDVI)、土地利用和土地覆盖(LULC)、人口密度、道路密度、聚落密度和工业密度。结果显示出显著的季节变化。2021年冬季记录到最高的年平均NO浓度(3.1×10 摩尔/立方米),而2022年季风季节最低(1.1×10 摩尔/立方米)。该研究表明,NO浓度与LST(0.47)、道路密度(0.55)、聚落密度(0.44)和工业密度(0.35)之间存在显著正相关,与NDVI呈负相关(-0.4)。回归分析表明,NO浓度与地表温度(LST;β = 0.02,R = 0.22)、道路密度(β = 0.002,R = 0.30)、聚落密度(β = 0.002,R = 0.19)和工业密度(β = 0.007,R = 0.12)呈正相关,而与NDVI呈负相关(β = -0.28,R = 0.16)。本研究为政策制定者和城市规划者提供了关键见解,倡导加强绿色基础设施建设、严格控制排放以及采取可持续城市发展战略,以减轻加济布尔的空气污染。我们的方法和研究结果有助于推动发展中国家城市空气质量管理的广泛讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验