Kobiyama Etsuki, Urbonas Darius, Aymoz Benjamin, Bodnarchuk Maryna I, Rainò Gabriele, Olziersky Antonis, Caimi Daniele, Sousa Marilyne, Mahrt Rainer F, Kovalenko Maksym V, Stöferle Thilo
IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zurich, 8093 Zurich, Switzerland.
ACS Nano. 2025 Feb 25;19(7):6748-6757. doi: 10.1021/acsnano.4c07819. Epub 2025 Jan 13.
Highly ordered nanocrystal (NC) assemblies, namely, superlattices (SLs), have been investigated as materials for optical and optoelectronic devices due to their unique properties based on interactions among neighboring NCs. In particular, lead halide perovskite NC SLs have attracted significant attention owing to their extraordinary optical characteristics of individual NCs and collective emission processes like superfluorescence (SF). So far, the primary method for preparing perovskite NC SLs has been the drying-mediated self-assembly method, in which the colloidal NCs spontaneously assemble into SLs during solvent evaporation. However, this method lacks controllability because NCs form random-sized SLs at random positions on the substrate, rendering NC assemblies in conjunction with device structures, such as photonic waveguides or microcavities, challenging. Here, we demonstrate template-assisted self-assembly to deterministically place perovskite NC SLs and control their geometrical properties. A solution of CsPbBr NCs is drop-casted on a substrate with lithographically defined hollow structures. After solvent evaporation and removal of excess NCs from the substrate surface, NCs remain only in the templates, thereby defining the position and size of these NC assemblies. We performed photoluminescence (PL) measurements on these NC assemblies and observed signatures of SF, similar to those in spontaneously assembled SLs. Our findings are crucial for optical devices that harness embedded perovskite NC assemblies and enable fundamental studies on how these collective effects can be tailored through the SL geometry.
高度有序的纳米晶体(NC)组件,即超晶格(SL),由于其基于相邻NC之间相互作用的独特性质,已被研究用作光学和光电器件的材料。特别是,卤化铅钙钛矿NC超晶格因其单个NC的非凡光学特性以及诸如超荧光(SF)等集体发射过程而备受关注。到目前为止,制备钙钛矿NC超晶格的主要方法是干燥介导的自组装方法,其中胶体NC在溶剂蒸发过程中自发组装成超晶格。然而,这种方法缺乏可控性,因为NC在基板上的随机位置形成随机尺寸的超晶格,使得与诸如光子波导或微腔等器件结构结合的NC组件具有挑战性。在这里,我们展示了模板辅助自组装,以确定性地放置钙钛矿NC超晶格并控制其几何性质。将CsPbBr NC的溶液滴铸在具有光刻定义的中空结构的基板上。在溶剂蒸发并从基板表面去除多余的NC后,NC仅保留在模板中,从而确定这些NC组件的位置和尺寸。我们对这些NC组件进行了光致发光(PL)测量,并观察到了SF的特征,类似于在自发组装的超晶格中观察到的特征。我们的发现对于利用嵌入式钙钛矿NC组件的光学器件至关重要,并能够对如何通过超晶格几何形状调整这些集体效应进行基础研究。