Suppr超能文献

个性化肺部渗透力学建模在区域肺顺应性估计中优化参数化方法的比较。

Comparison of optimization parametrizations for regional lung compliance estimation using personalized pulmonary poromechanical modeling.

机构信息

Laboratoire de Mécanique des Solides, École Polytechnique/CNRS/IPP, Palaiseau, France.

Inria, Palaiseau, France.

出版信息

Biomech Model Mechanobiol. 2023 Oct;22(5):1541-1554. doi: 10.1007/s10237-023-01691-9. Epub 2023 Mar 13.

Abstract

Interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) or post-COVID-19 pulmonary fibrosis, are progressive and severe diseases characterized by an irreversible scarring of interstitial tissues that affects lung function. Despite many efforts, these diseases remain poorly understood and poorly treated. In this paper, we propose an automated method for the estimation of personalized regional lung compliances based on a poromechanical model of the lung. The model is personalized by integrating routine clinical imaging data - namely computed tomography images taken at two breathing levels in order to reproduce the breathing kinematic-notably through an inverse problem with fully personalized boundary conditions that is solved to estimate patient-specific regional lung compliances. A new parametrization of the inverse problem is introduced in this paper, based on the combined estimation of a personalized breathing pressure in addition to material parameters, improving the robustness and consistency of estimation results. The method is applied to three IPF patients and one post-COVID-19 patient. This personalized model could help better understand the role of mechanics in pulmonary remodeling due to fibrosis; moreover, patient-specific regional lung compliances could be used as an objective and quantitative biomarker for improved diagnosis and treatment follow up for various interstitial lung diseases.

摘要

间质性肺疾病,如特发性肺纤维化(IPF)或 COVID-19 后肺纤维化,是一种进行性和严重的疾病,其特征是间质组织的不可逆转瘢痕形成,影响肺功能。尽管进行了许多努力,但这些疾病仍然知之甚少,治疗效果也不佳。在本文中,我们提出了一种基于肺的多孔弹性模型来估计个性化区域肺顺应性的自动化方法。该模型通过整合常规临床成像数据(即分别在两个呼吸水平拍摄的计算机断层扫描图像)进行个性化,以再现呼吸运动学,特别是通过具有完全个性化边界条件的逆问题进行个性化,以估计患者特异性区域肺顺应性。本文提出了一种新的逆问题参数化方法,基于个性化呼吸压力以及材料参数的联合估计,提高了估计结果的稳健性和一致性。该方法应用于 3 名特发性肺纤维化患者和 1 名 COVID-19 后患者。这种个性化模型可以帮助更好地理解纤维化导致的肺重塑中的力学作用;此外,患者特异性区域肺顺应性可以作为一种客观的定量生物标志物,用于改善各种间质性肺疾病的诊断和治疗随访。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c05d/10009868/15ecca74ae72/10237_2023_1691_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验